## Section 16. Pythagorean Triangles

Note. In this section we consider right triangles with integer-length sides (i.e., Pythagorean triangles). We classify all triples of representing these lengths in Theorem 16.1.

Note. The Babylonians knew a number of several right triangles with integerlength sides. Such a triple of (positive) integers is called a "Pythagorean triple." The most familiar examples are $3,4,5$ and $5,12,13$ (since $3^{2}+4^{2}=5^{2}$ and $5^{2}+$ $12^{2}=13^{4}$, respectively). Dudley says (page 127) that the Babylonians knew of the Pythagorean triples $(319,360,481),(1679,2400,2929),(1771,2700,3229)$, ( $4601,4900,6649$ ), and $(4961,6480,8161)$, and claims that they likely used these as a table of trigonometric function values. It seems that the Babylonians knew the Pythagorean Theorem, but they knew of it experimentally instead of in terms of a proof (a proof is thought to originally be given by Pythagoras himself; see my online notes for History of Mathematics [MATH 3040] on Section 3.4. Pythagorean Theorem and Pythagorean Triples).

Definition. A right triangle whose sides have integer lengths is a Pythagorean triangle. The lengths of the sides a Pythagorean triangle form a Pythagorean triple.

Note. To find all Pythagorean triangles (or equivalently, all Pythagorean triples) is to find all positive integer solutions of the equation $x^{2}+y^{2}=z^{2}$. We will find
all Pythagorean triples in Theorem 16.1.

Note 16.A. We may assume that $x$ and $y$ are relatively prime, for if the greatest common divisor $(x, y)=d$, then we must have $d \mid z$, and so $(x / d)^{2}+(y / d)^{2}=(z / d)^{2}$, where $(x / d, y / d)=1$ by Theorem 1.1. So if we can solve $x^{2}+y^{2}=z^{2}$ for $(x, y)=1$, then we can find all solutions of $x^{2}+y^{2}=z^{2}$.

Definition. A solution $x=a, y=b, z=c$ of $x^{2}+y^{2}=z^{2}$ in which $a, b$, and $c$ are positive and the greatest common divisor $(a, b)=1$ is called a fundamental solution of the equation. The corresponding triple, $(a, b, c)$, is called a primitive Pythagorean triple.

Note. It is easily shown that if $(x, y)=1$ in $x^{2}+y^{2}=z^{2}$ then $(y, z)=(x, z)=1$; this is Exercise 1 on page 129. So we see that in a fundamental solution $x=a$, $y=b, z=c$ we have no two of $, b, c$ have a common prime factor.

Lemma 16.1. If $a, b, c$ is a fundamental solution of $x^{2}+y^{2}=z^{2}$, then exactly one of $a$ and $b$ is even.

Note. By Lemma 16.1, $a^{2}+b^{2}$ is odd in a fundamental solution of $x^{2}+y^{2}=z^{2}$, so $c^{2}$ must be odd. This is formalized in the next corollary.

Corollary 16.A. If $a, b, c$ is a fundamental solution, then $c$ is odd.

Note. We need some lemmas before classifying fundamental solutions to $x^{2}+y^{2}=$ $z^{2}$.

Lemma 16.2. If $r^{2}=s t$ and $(s, t)=1$, then both $s$ and $t$ are squares.

Lemma 16.3. Suppose that $a, b, c$ is a fundamental solution of $x^{2}+y^{2}=z^{2}$, and suppose that $a$ is even. Then there are positive integers $m$ and $n$ with $m>n$, $(m, n)=1$, and $m \not \equiv n(\bmod 2)$ such that $a=2 m n, b=m^{2}-n^{2}$, and $c=m^{2}+n^{2}$.

Lemma 16.4. If $a=2 m n, b=m^{2}-n^{2}$, and $c=m^{2}+n^{2}$, then $a, b, c$ is a solution of $x^{2}+y^{2}=z^{2}$. If in addition, $m>n, m$ and $n$ are positive, $(m, n)=1$, and $m \not \equiv n$ $(\bmod 2)$, then $a, b, c$ is a fundamental solution.

Note. We can now combine Lemmas 16.3 and 16.4 into the following.

Theorem 16.1. All solutions $x=a, y=b, z=c$ to $x^{2}+y^{2}=z^{2}$, where $a, b, c$ are positive and have no common factor and $a$ is even, are given by $a=2 m n$, $b=m^{2}-n^{2}, c=m^{2}+n^{2}$, where $m$ and $n$ are any relatively prime integers, not both odd, and $m>n$.

Note. In the supplement to this section, The Group of Primitive Pythagorean Triples, we use Theorem 16.1 to put a group structure on all of the fundamental solutions to $x^{2}+y^{2}=z^{2}$ (that is, on all Pythagorean triples).

