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Section 17. Infinite Descent and

Fermat’s Conjecture

Note. In this section, we briefly tell the story of “Fermat’s Last Theorem.” This

result claims that there are no positive integer solutions to the equation xn+yn = zn

for n ≥ 3. We prove that the equation x4 + y4 = z2 has no integer solutions; see

Theorem 17.1. This, in turn, implies that the equation x4+y4 = z4 has no solutions

and so we give a proof of Fermat’s Last Theorem for the case n = 4. In the process,

we illustrate Fermat’s method of infinite descent. We take a short excursion away

from the text book and consider equations of the form w3 + x3 + y3 = z3.

Note. In Section 16. Pythagorean Triangles we found all solutions (in integers)

of the equation x2 + y2 = z2 (see Theorem 16.1). Since, by the Pythagorean

Theorem, we see that integer solutions of this equation allow us to construct right

triangles (and to use these right triangles in connection with certain trigonometric

functions), then we see a practical reason to search for such solutions. This has

a historical foundation; see my notes for History of Mathematics (MATH 3040),

especially the material Egyptian geometry (which is, at this date [spring 2022],

still in preparation). Dudley comments (page 135) that: “. . . it would be natural

to try the same ideas on an equation of one higher degree, x3 + y3 = z3.” Your

humble instructor interprets this as one of those weird instances of the use of the

term “natural” in a rather unnatural setting! None-the-less, this is the beginning

of a mathematically famous problem. We tell the back story in more detail in the

supplement Fermat’s ”Last” Theorem to this section.

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-16.pdf
https://faculty.etsu.edu/gardnerr/3040/notes-Eves6.htm
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Supplement-Fermat-Last-Theorem.pdf
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Definition. An integer solution to xn + yn = zn where one of the variables is 0 is

a trivial solution.

Note. Around 1630, Fermat famously wrote in the margin of his copy of Dio-

phantus’ Arithmetica (for historical details on Diophantus and Arithmetica, see the

online notes for Section 3. Linear Diophantine Equations) that there are no non-

trivial solutions for xn + yn = zn when n ≥ 2, but he failed to provide a proof (as

was often the case with his claims). He wrote:

It is impossible to separate a cube into two cubes, or a fourth power

into two fourth powers, or in general, any power higher than the second,

into two like powers. I have discovered a truly marvelous proof of this,

which this margin is too narrow to contain.

See the MacTutor History of Mathematics Archive’s page on Fermat’s Last The-

orem and the Wikipedia page on Fermat’s Last Theorem. The statement was

discovered after Fermat’s death in 1665 by his son, Clément-Samuel Fermat, who

included his father’s marginal comment in a new edition 1670 of Arithmetica. Fer-

mat had made a number of unproved claims such as this. All eventually fell in

due time, except for this claim, which became known as “Fermat’s Last Theorem”

(though it was not prove for three centuries, and should have been known at the

time as “Fermat’s Conjecture”). The Last Theorem was proved, after about a

decade of dedicated work, in 1994 by Andrew Wiles (April 11, 1953–present) of the

University of Oxford and Princeton University, using techniques involving elliptic

curves and the Modularity Theorem. His proof appears in two articles in Annals

of Mathematics, 141(3) (1995) as:

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-3.pdf
https://mathshistory.st-andrews.ac.uk/HistTopics/Fermat's_last_theorem/
https://mathshistory.st-andrews.ac.uk/HistTopics/Fermat's_last_theorem/
https://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem
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Wiles, Andrew. “Modular Elliptic Curves and Fermat’s Last Theorem.” Annals

of Mathematics, 141(3), 443–551 (1995).

Taylor, Richard, and Andrew Wiles. “Ring-Theoretic Properties of Certain Hecke

Algebras.” Annals of Mathematics, 141(3), 553–572 (1995).

You an see previews of these articles through JSTOR, but you may have to enter

your university username and password to read the entire article.

Note. The rest of this section of the book is devoted to proving the following.

Theorem 17.1. There are no nontrivial solutions of x4 + y4 = z2.

Note. The technique of proof used in Theorem 17.1 allows us to produce a strictly

smaller nontrivial value of z2 from a given solution, and to repeat this process

producing progressively smaller values of z2. This is the reason the technique is

called Fermat’s method of infinite descent.

Note. When your less-than-humble instructor was taking Number Theory (MH

330) at Auburn University at Montgomery in fall quarter 1982, he noticed that

33 + 43 + 53 = 63. Having access to reliable computing equipment while working at

the Alabama Department of Environmental Management—Air Division, he found

hundreds primitive of quadruples (A, B, C,D) that satisfy the equation A3 + B3 +

C3 = D3. Using terminology similar to that of “Pythagorean triples” (and pushing

https://www.jstor.org/stable/i310703
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aside any humility), these became “internally” known as Gardner quadruples! By

Fermat’s Last Theorem (or “Wiles Theorem”), we know that x3 + y3 = z3 has no

nontrivial solution. So a “natural” equation to consider is w3 + x3 + y3 = z3.

Note. It turns out that Leonhard Euler (April 15, 1707–September 18, 1783) found

all rational solutions (A, B, C,D) in his “Solutio generalis quorundam problematum

Diophanteorum, quae vulgo nonnisi solutiones speciales admittere videntur” (1761),

Euler Archive—All Works 255. You can download a PDF of this (in Latin) from

the Scholarly Commons’ Euler Archives (accessed 3/19/2022); see his Section 16 on

page 165. Euler’s solution is also presented in G. H. Hardy and E. M. Wright’s An

Introduction to the Theory of Numbers, Oxford University Press, London. There are

several editions of this in print (starting in 1938) and you may find a version online

in PDF. Euler’s solution is given in the section “The Equation x3 + y3 + z3 = t3”

of the chapter “Some Diophantine Equations.” It uses five parameters to produce

the solution (A, B, C,D), sometimes using a non-integer rational as a parameter

to give an integer solution. A cleaner solution was given by Ajai Choudhry in “On

Equal Sums of Cubes,” Rocky Mountain Journal of Mathematics, 28(4), 1251–

1257 (1998). A copy of his work is online at the Project Euclid page (accessed

3/19/2022). Choudhry considers three types of Diophantine equations: (1) w3 +

x3 + y3 + z3 = 0, (2) w3 + x3 = y3 + z3, and (3) w3 + x3 + y3 = z3. If we consider

negative values of the variables as well, then these three equations are equivalent.

His result concerning w3 + x3 + y3 = z3 is:

https://scholarlycommons.pacific.edu/euler-works/255/
https://projecteuclid.org/journals/rocky-mountain-journal-of-mathematics/volume-28/issue-4/On-Equal-Sums-of-Cubes/10.1216/rmjm/1181071714.full
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Choudhry’s Theorem. The complete solution in positive integers of

the equation w3 + x3 + y3 = z3, where the greatest common divisor

(w, x, y, z) = 1, is given by

dw = c(−a3 − b3 + c3)

dx = −a4 + 2a3b− 3a2b2 + 2ab3 − b4 + (a + b)c3

dy = a4 − 2a3b + 3a2b2 − 2ab3 + b4 + (2a− b)c3

dz = c(a3 − (a− b)3 + c3)

where a, b, c are positive integers such that a > b and c > (a3 + b3)1/3,

and d > 0 is taken so that (w, x, y, z) = 1.

Maybe a better name for a quadruple (A, B, C,D) such that A3 + B3 + C3 =

D3 is a Euler quadruple or a Choudhry quadruple! A related result appears in

James Harper’s “Ramanujan, Quadratic Forms, and the Sum of Three Cubes,”

Mathematics Magazine, 86(4), 275–279 (2013). In a simple approach “using only

basic precalculus tools,” he finds solutions where each of A, B, C, and D are given

by quadratic forms; that is, given in the form au2+buv+cv2. His paper is available

on the JSTOR website (accessed 3/19/2022).

Note. As a final comment, we mention that the equation w4 + x4 + y4 = z4

was solved in general in N. Elkies’ “On A4 + B4 + C4 = D4,” Mathematics of

Computation, 51, 825-835 (1988).

Revised: 3/19/2022

https://www.jstor.org/stable/10.4169/math.mag.86.4.275

