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Section 18. Sums of Two Squares

Note. In this section, we classify the integers that can be written as the sum of

two squares. For example, 1 = 02 + 12, 2 = 12 + 12, 4 = 02 + 22, 5 = 12 + 22,

8 = 22 + 22, 9 = 02 + 32, 10 = 12 + 32, 13 = 22 + 32, etc. The conditions under

which such a representation of n exists depends on the prime-power decomposition

of n.

Note. We first prove several lemmas.

Lemma 18.A. If the prime-power decomposition of n contains a prime congruent

to 3 (mod 4) which is raised to an odd power, then n cannot be written as the sum

of two squares.

Note. We can establish the next result by simply multiplying out.

Lemma 18.1. For any integers a, b, c, d, we have (a2 + b2)(c2 + d2) = (ac + bd)2 +

(ad− bc)2.

Note 18.A. Lemma 18.1 shows that the product of two numbers that can be

written as a sum of two squares, itself can be written as a sum of two squares. By

mathematical induction, we have that the product of a finite collection of numbers

that can be written as a sum of squares, itself can be written as a sum of squares
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Definition. Positive integer n is representable if it is the sum of two squares of

integers.

Note. Notice that if n = x2 + y2 then for any k we have

k2n = k2(x2 + y2) = (kx)2 + (ky)2.

We summarize this in the next result.

Lemma 18.2. If n is representable, the so is k2n for an k.

Exercise 18.2. We can illustrate the use of Lemmas 18.1 and 18.2 by representing

325 as a sum of two squares. First, 325 = 52 · 13. So by Lemma 18.2, if we can

write 13 as a sum of two squares, then we have a solution. As observed above,

13 = 22 + 32. So we have 325 = 52(22 + 32) = 5222 + 5232 = 102 + 152 . �

Lemma 18.3. Any integer n can be written in the form n = k2p1p2 · · · pr, were k

is an integer and the p’s are different primes.

Exercise 18.3. If the prime-power decomposition of n contains no prime p, where

p ≡ 3 (mod 4), to an odd power, then n = k2p1p2 · · · pr or n = 2k2p1p2 · · · pr for

some k and r, where each p is congruent to 1 (mod 4).

Lemma 18.4. Every prime congruent to 1 (mod 4) can be written as a sum of

two squares.
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Theorem 18.1. Integer n cannot be written as the sum of two squares if and only

if the prime-power decomposition of n contains a prime congruent to 3 (mod 4) to

an odd power.

Note. Dudley’s proof of Lemma 18.4 is based on Fermat’s infinite descent, instead

of the minimality assumption of k that we presented. The process is the same and

we computed k1 < k in our proof as well (whereas Dudley uses k1 < k to employ

Fermat’s infinite descent, we used it to prove that k = 1). As an illustration of

Dudley’s proof technique, consider the expression of 145 = 5 · 29 as a sum of two

squares: 12 + 122 = 145. From this, we can find an expression of p = 29 as a sum

of two squares. Notice that prime p = 29 ≡ 1 (mod 4). So we take k = 5, x = 12,

and y = 1. We need r ≡ x (mod k) and s ≡ y (mod k) such that r and s are in

the interval (−k/2, k/2]; that is, we need r ≡ 12 (mod 5) and s ≡ 1 (mod 5) in

(−5/2, 5/2]. So we take r = 2 and s = 1. Then by Lemma 18.1,

52 · 29 = (22 + 12)(122 + 12) = (2 · 12 + 1 · 1)2 + (2 · 1− 1 · 12)2 = 252 + 102.

Dividing by k2 = 25 gives 29 = 52 + 22, as sought. Here, x1 = (rx + sy)/k =

(2 · 12 + 1 · 1)/5 = 5 and y1 = (ry− sx)/k = (2 · 1− 1 · 12)/5 = −2, consistent with

the result here.

Note. Having classified which integers can be represented as a sum of two squares,

we can look to generalize this in a number of ways. We might consider (as Dudley

declares “natural now to wonder” on page 146) which integers have representations

as the sum of three squares. Adrien-Marie Legendre (September 18, 1752–January
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9, 1833) proved that any nonnegative integer n can be represented as a sum of three

squares, n = x2+y2+z2, if and only if n is not of the form 4e(8k+7) for some integers

e and k. His result appears in Essai sur la théorie des nombres, Paris, An VI (1797-

1798), pages 202 and 398-399. A more brief proof can be found in N. C. Ankeny’s

“Sums of Three Squares,” Proceedings of the American Mathematical Society, 8(2),

316–319 (1957), available on the AMS website (accessed 3/23/2022). Ankeny’s

proof is based on results in these notes (quadratic reciprocity which we covered

in Section 12. Quadratic Reciprocity and Dirichlet’s Theorem which appears as

Theorem 22.B in Section 22. Formulas for Primes), plus “Minkowski’s Theorem

on lattice points within convex symmetric bodies.” Continuing in this direction of

inquiry, we could consider the integers which can be represented as a sum of four

squares, n = w2 + x2 + y2 + z2. In the next section, Section 19. Sums of Four

Squares, we show that every nonnegative integer can be represented as a sum of

four squares (see Theorem 19.1).

Note. We seem to have skipped cubes. Backing up to the case of cubes, we might

ask how many cubes of nonnegative integers, s, does it take to insure that every pos-

itive integer is a sum of s cubes? The correct answer is 19. This was partially shown

in Arthur Wieferich’s “Beweis des Satzes, daßsich eine jede ganze Zahl als Summe

von höchstens neun positiven Kuben darstellen läßt,” Mathematische Annalen, 66,

95-101 (1909). Unfortunately, Wieferich made some computational errors, but

these were corrected by A. J. Kempner in “Bemerkungen zum Waringschen Prob-

lem,” Mathematische Annalen, 72, 387-399 (1912); this history can be found in L.

E. Dickson’s “Simpler Proofs of Warings Theorem of Cubes, With Various General-

https://www.ams.org/journals/proc/1957-008-02/S0002-9939-1957-0085275-8/S0002-9939-1957-0085275-8.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-12.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-22.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-19.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-19.pdf


Section 18. Sums of Two Squares 5

izations,” Transactions of the American Mathematical Society, 30(1), 1–18 (1928),

available online on the AMS website (accessed 3/23/2022). The general problem of

finding the least value s such that every nonnegative integer can be represented as

a sum of no more then s kth powers is known as Waring’s Problem. It is named for

British mathematician Edward Waring (circa 1736–August 15, 1798), who stated it

in his 1770 Meditationes Algebraicae, where he conjectured that every nonnegative

integer is the sum of four squares (as we see in the next section), as the sum of

nine cubes (as shown by Wieferich and Kempner) and as a sum of nineteen fourth

powers. The claim for fourth powers was shown by R. Balasubramanian, J. M.

Deshouillers, and F. Dress in “Problème de Waring pour les bicarrés. I. Schéma de

la solution” [Waring’s problem for biquadrates. I. Sketch of the solution], Comptes

Rendus de l’Académie des Sciences, Série I, 303(4), 85-88 (1986) and “Problème

de Waring pour les bicarrés. II. Rsultats auxiliaires pour le théorème asympto-

tique” [Waring’s problem for biquadrates. II. Auxiliary results for the asymptotic

theorem], Comptes Rendus de l’Académie des Sciences, Série I, 303(5), 161-163

(1986). Representing parameter s as g(k), where k is the exponent, these results

state that g(2) = 4, g(3) = 9, and g(4) = 19. Wikipedias’s Waring’s Problem

webpage (accessed 3/23/2022) lists other values of g(k) and gives references on

studies of bounds which have been put on the quantity G(k). This function G(k) is

defined as the least value of s such that every sufficiently large nonnegative integer

can be written as a sum of no more than s kth powers. There are still unproved

conjectures related to these values g(k) and G(k).

https://www.ams.org/journals/tran/1928-030-01/S0002-9947-1928-1501417-5/S0002-9947-1928-1501417-5.pdf
https://en.wikipedia.org/wiki/Waring%27s_problem
https://en.wikipedia.org/wiki/Waring%27s_problem
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Note. A related conjecture deals with sums of prime numbers. Prussian mathe-

matician Christian Goldbach (March 18, 1690–November 20, 1764) wrote a letter

to Leonhard Euler on June 7, 1742 and conjectured that every even integer greater

than 2 can be written as the sum of two primes. This is one of the oldest unproved

conjectures in number theory (and also one of the easiest to state). This has been

computationally confirmed for nonnegative integers up to 4×101) (according to the

Goldbach Conjecture Verification website; accessed 3/23/2022). Goldbach’s Weak

Conjecture (also called the Ternary Goldbach Conjecture) claims that every odd

number greater than 5 can be expressed as the sum of three (not necessarily dis-

tinct) primes. This conjecture has an ETSU connection. In 2013, Harald Helfgott

proposed a proof that was accepted for publication in Annals of Mathematics Stud-

ies (in 2015), but which has apparently not yet appeared. A Google search indicates

that the latest available work on this is from 2015 and is available on arXiv.org:

The Ternary Goldbach Problem (this is a 327 page document; accessed 2/28/2022).

The ETSU connection is that Harald Helgott is the son of former ETSU Depart-

ment of Mathematics and Statistics faculty members Drs. Edith Seier and Michel

Helfgott (both retired in the late 2010s). More details on Goldbach’s Conjecture

are in my online notes for Mathematical Reasoning (MATH 3000) on Section 6.9.

Perfect Numbers, Mersenne Primes, Arithmetic Functions.
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http://sweet.ua.pt/tos/goldbach.html
https://arxiv.org/pdf/1501.05438.pdf
https://faculty.etsu.edu/seier/
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-9.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-9.pdf

