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Section 2. Unique Factorization

Note. In this section, we define prime numbers. We state and prove the Unique

Factorization Theorem (Theorem 2.2; this is also called “The Fundamental The-

orem of Arithmetic”). In this section, we use lower-case italic letters to

denote positive integers! Much of the material in this section is also in my on-

line notes for Mathematical Reasoning (MATH 3000) on Section 6.3. Divisibility:

The Fundamental Theorem of Arithmetic.

Definition. An integer that is greater than 1 and has no positive divisors other

than 1 and itself is a prime number. An integer that is greater than 1 but is not

prime is a composite number.

Note. Notice that 1 is neither a prime nor a composite. In fact, 1 is a “unit.” We

could extend the ideas of prime and composite to negative integers, in which case

−1 is also a unit (notice that −1 and 1 are the only integers with multiplicative

inverses in Z). However, Dudley only consider positive integers in this section. The

ideas of prime and composites are explored in more detail in Introduction to Modern

Algebra 2 (MATH 4137/5137); see my online notes for this class on Section IX.45.

Unique Factorization Domains where primes are defined in the setting of integral

domains (in particular, see Definition 45.5 and Corollary 45.18).

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-3.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-3.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/IX-45.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/IX-45.pdf
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Note. No doubt you are familiar with prime numbers. The cover of the text book

(the hard bound version published by W.H. Freeman in 1978) gives the (positive)

prime numbers and unit for numbers up to 100 (I have actually always been puzzled

as to why 1 is included. . . ). As Dudley states: “The primes can thus be used to

build, by multiplication, the entire system of positive integers. . . . every positive

integer can be written as a product of primes. Later we will prove the uniqueness

of the representation.” See page 11. The first two lemmas in this section deal with

the existence of the representation of an integer as a product of primes.

Lemma 2.1. Every integer n, with n > 1, is divisible by a prime.

Lemma 2.2. Every integer n, with n > 1, can be written as a product of primes.

Note. Inductive proofs can also be given for Lemmas 2.1 and 2.2 (see Exercise

2.2, for example). The next result is a “celebrity of mathematics”! It appears

in Euclid’s Elements of Geometry in Book IX as Proposition 20. Euclid states it

as “Prime numbers are more than any assigned multitude of prime numbers.” A

proof can be found in David Joyce’s online version of Euclid’s Elements. Links to

several different versions are on the University of Tennessee-Martin’s PrimePages

on “Proofs that there are infinitely many primes”. The website PrimePages has

up-to-date information on prime number research (accessed 7/1/2021).

Theorem 2.1. Euclid’s Theorem. There are infinitely many primes.

https://mathcs.clarku.edu/~djoyce/java/elements/bookIX/propIX20.html
https://primes.utm.edu/notes/proofs/infinite/index.html
https://primes.utm.edu/notes/proofs/infinite/index.html
https://primes.utm.edu/
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Note. Over the years, finding large prime numbers has been a challenge addressed

by the increased computational power of computers. Dudley makes some quaint

observations on page 12 where observes that the largest currently known prime

is 219,937 − 1 which has over 6,000 digits; this was the state of things in 1978.

According to Primepages’ The Largest Known Primes—A Summary, the largest

known prime is 282,589,933 − 1 which has 24,862,048 digits and was found in 2018

(accessed 7/1/2021).

Note. The next two lemmas relate to testing integers to see if they are composite.

Lemma 2.3. If n is composite, then it has a divisor d such that 1 < d ≤ n1/2.

Lemma 2.4. If n is composite, then it has a prime divisor d such that 1 < d ≤ n1/2.

Note. Lemma 2.4 is the basis for the “Sieve of Eratosthenes.” The idea is to

eliminate composite numbers by first removing multiples of 2 greater than 2, then

removing multiples of 3 greater than 3, then removing multiples of 5 greater than

5, etc. If all multiples of primes less than or equal to n have been removed, then all

numbers less than n2 which remain must be prime. Wikipedia has a nice animated

GIF of the Sieve of Eratosthenes which finds all prime numbers between 2 and 120

by eliminating multiples of 2, 3, 5, 7, and 11.

https://primes.utm.edu/largest.html
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes#/media/File:Sieve_of_Eratosthenes_animation.gif
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes#/media/File:Sieve_of_Eratosthenes_animation.gif
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Note. Eratosthenes of Cyrene (275 bce – 194 bce) was born in modern-day

Shabbat, Libya in North Africa. He served as the third librarian at the Alexan-

drian Library in Egypt starting around 240 bce. In Eutocius commentary on

Archimedes’ Sphere and Cylinder, a letter written by Eratosthenes to Ptolemy

III describes the history of the problem of duplicating the cube (that is, using a

compass and straight-edge to construct a line segment of length 3
√

2, given a line

segment of length 1; this remained a famous unsolved problem until around 1800).

Eratosthenes made several contributions to astronomy. He estimated the distance

to the Sun and the Moon. He estimated the tilt of the Earth’s axis with a high

degree of accuracy. However, he is probably most famous for giving an accurate

measurement of the circumference of the Earth in On the Measurement of the Earth

(a work lost, but known from secondary references of the time; knowledge of ancient

lost works is often based of references to the work such as in a commentary of the

work). Of interest in this class is Eratosthenes contribution to number theory. The

Sieve of Eratosthenes is described in Introduction to Arithmetic by Nicomachus;

a version in English can be browsed online at the Hathi Trust Digital Library.

This information, and the picture below, are from the Eratosthenes page on the

MacTutor History of Mathematics Archive (accessed 7/1/2021).

https://babel.hathitrust.org/cgi/pt?id=mdp.39015005675411&view=1up&seq=9
https://mathshistory.st-andrews.ac.uk/Biographies/Eratosthenes/
https://mathshistory.st-andrews.ac.uk/Biographies/Eratosthenes/
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Note. The next result, sometimes known as “Euclid’s Lemma,” makes the unique

factorization of integers into products of primes possible. It appears in Euclid’s

Elements of Geometry as Proposition 30 of Book VII where it is stated as: “If two

numbers, multiplied by one another make some number, and any prime number

measures the product, then it also measures one of the original numbers.” This

statement and Euclid’s proof can be found in David Joyce’s Euclid’s Elements page.

Lemma 2.5. Euclid’s Lemma.

For p prime, if p | ab then either p | a or p | b.

Note. We now extend Euclid’s Lemma using Mathematical Induction.

Lemma 2.6. For p prime, if p | (a1a2 · · · ak) then p | ai for some i = 1, 2, . . . , k.

Lemma 2.7. If q1, q2, . . . , qn are primes and p | q1q2 · · · qn then p = qk for some

k = 1, 2, . . . , n.

Note. We can now state the main theorem of this section. Dudley refers to it as

“The Unique Factorization Theorem” (thus the title of this section), but it is also

commonly known as “The Fundamental Theorem of Arithmetic.” A proof can also

be found in Introduction to Modern Algebra 2 (MATH 4137/5137); see Corollary

45.18 in my online notes for this class on Section IX.45. Unique Factorization

Domains.

https://mathcs.clarku.edu/~djoyce/java/elements/bookVII/propVII30.html
https://faculty.etsu.edu/gardnerr/4127/notes/IX-45.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/IX-45.pdf
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Theorem 2.2. The Unique Factorization Theorem or The Fundamental

Theorem of Arithmetic.

Any positive integer greater than 1 can be written as a product of primes in one

and only one way.

Note. It follows from The Unique Factorization Theorem that each positive integer

n > 1 can be written in exactly on way in the form n = pe1
1 pe2

2 · · · pek

k where ei ≥ 1

and pi is prime for i = 1, 2, . . . , k, and pi 6= pj for i 6= j.

Definition. For integer n > 1, the expression of n as in the form n = pe1
1 pe2

2 · · · pek

k

where ei ≥ 1 and pi is prime for i = 1, 2, . . . , k, and pi 6= pj for i 6= j is the

prime-power decomposition of n.

Note. We can use the prime-power decomposition of two integers to easily find

the greatest common divisor. Since the only divisor of a power of prime p (other

than 1) is another prime power of p (less than or equal to the first), then the only

common divisors involve powers of the same primes. That is, if the prime-power

decomposition of m involves pei

i and the prime-power decomposition of n involves

pe`

i then a common divisor of m and n is p
min{ei,e`}
i . For example, if n = 120 = 23 ·3·5

and m = 252 = 22 · 32 · 7 then we see that common divisors are 22 and 3, and these

are the only power-or-a-prime common divisors. So the greatest common divisor

is (120, 252) = 22 · 3 = 12. Alternatively, we can express 120 and 252 as powers

of common primes by using exponents of 0 to get: 120 = 23 · 31 · · · 51 · 70 and
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252 = 22 · 32 · 50 · · · 71. We then just pick off the powers of primes using the least

exponents to get (120, 252) = 22 ·31 ·50 · · · 70 = 12. This is the idea behind the next

result, which we state without proof.

Theorem 2.3. If ei ≥ 0 and fi ≥ 0 for i = 1, 2, . . . , k, and

m = pe1
1 pe2

2 · · · pek

k and n = pf1

1 pf2

2 · · · pfk

k ,

then (m, n) = pg1

1 pg2

2 · · · pgk

k where gi = min{ei, fi} for i = 1, 2, . . . , k.

Revised: 3/4/2022


