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Section 20. x2 −Ny2 = 1

Note. In this section, we discuss more general Diophantine equations. We give a

bit of history, and then focus on Pell’s equation x2 −Ny2 = 1.

Note/Definition. We take a general Diophantine equation as a polynomial equa-

tion with integer coefficients and a finite number of unknowns. A solution is a col-

lection of integer values for the variables which make the equation true. In Section

3. Linear Diophantine Equations we considered first degree polynomial equations

in two variables, and classified the solutions in Theorem 3.1. In Section 18. Sums

of Two Squares we considered Diophantine equations of the form x2 + y2 = n

and classified when solutions exist in Theorem 18.1. In Section 19. Sums of Four

Squares we considered equations of the form x2 +y2 +z2 +w2 = n and showed that

a solution exists for all n ≥ 0 in Lagrange’s Four-Square Theorem (Theorem 19.1).

Note. In 1900 at the International Congress of Mathematicians in Paris, David

Hilbert (January 23, 1862–February 14, 1943) stated 10 unsolved problems that

should gain the attention of mathematicians in the 20th century. The list later grew

to 23 problems and was published in The Bulletin of the American Mathematical

Society in 1902. The tenth-problem concerns solutions to Diophantine equations:

Given a Diophantine equation with any number of unknown quantities

and with rational integral numerical coefficients: To devise a process

according to which it can be determined in a finite number of operations

whether the equation is solvable in rational integers.

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-3.pdf
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In 1970, Yuri Matiyasevich proved that no such process exists. His proof is based

on earlier work of Martin Davis, Hilary Putnam, and (crucially) Julia Robin-

son. The result is variously called Matiyasevich’s Theorem or the Matiyasevich-

Robinson-Davis-Putnam Theorem (or simply the MRDP Theorem). The reference

for Matiyasevich’s main paper is: “Enumerable Sets are Diophantine,” Dokl. Adad.

Nauk SSSR, 191 279–282 (1970, in Russian), and Soviet Math. Doklady, 11, 354–

357 (1970, English translation). A readable explanation of the proof appears in

Martin Davis’ “Hilbert’s Tenth Problem is Unsolvable,” The American Mathemat-

ical Monthly, 80(3), 233–269 (1973); a copy is available online on the MAA website.

An example of a general result concerning this type of problem is the following.

Theorem 20.A. Let

F (x, y) = anx
n + an−1x

n−1y + an−2x
n−2y2 + · · ·+ a0y

n,

and suppose that F (x, 1) = 0 has no repeated roots. Then the equation F (x, y) = c,

where c is an integer, has only finitely many solutions if n ≥ 3.

Note. Dudley does not give a reference for Theorem 20.A. Yann Bugeaud mentions

the result in his “On Some Results of Alan Baker,” Resonance, 735–748 (July 2018),

available online on the Indian Academy of Sciences website (notice Theorem 2.5

in this paper is our Theorem 20.A; accessed 3/28/2022), where he credits it to

“Feldman, 1971.” The result seems to follow from Feldman’s much more general

result which, in turn, builds on work of Gelfond, Baker, and Thue. The reference

for Felman’s paper is: N. I. Feldman, “An Effective Power Sharpening of a Theorem

https://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/MartinDavis.pdf
https://www.ias.ac.in/article/fulltext/reso/023/07/0735-0748
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of Liouville,” Izv. Akad. SSSR, Ser. Math., 35, 973–990 (1971; in Russian). For

a discussion on solving Diophantine equations and another reference to Feldman’s

work, see R. J. Stroeker’s “How to Solve a Diophantine Equation: A Number-

Theoretic Excursion,” The American Mathematical Monthly, 91(7) 385–392 (1984);

this is available through JSTOR.

Note. We now concentrate on Diophantine equations of two variables of the form

axn+byn = c. We see by Theorem 20.A that such equations have only finitely many

solutions for n ≥ 3. In the case n = 1, we saw when solutions do not exist and when

they do (in which case there were infinitely many, and we found these solutions) in

Theorem 3.1. The general case for n = 2 is “too complicated for us to treat here”

(Dudley, page 156). We saw a special case in Section 16. Pythagorean Triangles.

We now consider another special case, equations of the form x2 −Ny2 = 1. We’ll

see in Theorem 20.1 that when such an equation has a solution, it has infinitely

many solutions.

Note. A solution of x2 − Ny2 = 1 can be used to get a rational approximation

of
√

N . Since the graph of x2 − Ny2 = 1 is a hyperbola centered at (0, 0) with

asymptotes y = ±x/
√

N , then for x “large”, we have y ≈ x/
√

N or
√

N ≈ x/y.

Indian astronomer and mathematician Brahmagupta (598–670) extensively studied

the equation in his Brāhmasphut.asiddhānta. The computation of solutions requires

the manipulation of large numbers. Others who made additional contributions (also

in India) are Bhaskara II (1114–1185) and Narayana (1340–1400). These Indian

https://www.jstor.org/stable/2322983
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-16.pdf
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results were unknown in Europe, when Fermat took an interest in the problem

in 1657. In writing on the equation, Leonhard Euler mistakenly attributed some

work to John Pell (which was actually results of another, William Brouckner),

and the equation became known as Pell’s Equation (or sometimes the Pell-Fermat

Equation); Dudley prefers the term “Fermat’s Equation.” These historical notes

(and the few that follow) are based on the MacTutor History of Mathematics

Archive webpage on Pell’s Equation and the Wikipedia page on Pell’s Equation.

Note. One way to solve x2 −Ny2 = 1 (for a given N) is to make a table of values

of 1 + Ny2 and look for a square. For example, to solve x2 − 2y2 = 1, we consider:

y 1 + 2y2

1 3

2 9

So a solution is given by x = 3 and y = 2. For x2 − 3y2 = 1, we consider:

y 1 + 3y2

1 4

2 13

3 28

4 49

So two solutions are x = 2 and y = 1, and x = 7 and y = 4. The ease of these two

examples is misleading! With n = 13, the smallest solution is x = 649 and y = 180;

with n = 61, the smallest solutions is x = 1,766,319,049 and y = 226,153,980 (in

fact, Bhaskara II (1114–1185) found this solution for n = 61).

https://mathshistory.st-andrews.ac.uk/HistTopics/Pell/
https://mathshistory.st-andrews.ac.uk/HistTopics/Pell/
https://en.wikipedia.org/wiki/Pell%27s_equation
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Note. Notice that for N ≤ 0, there are unique solutions, mostly involving y = 0

and x = ±1. So we will only consider positive N . Notice that if N itself is a

square, say N = m2, then the Pell equation becomes 1 = x2 −Ny2 = x2 −m2n2 =

(x−my)(x + my). So we must have that both (x−my) and (x + my) are +1 or

are −1, from which we find that x = ±1 and y = 0. So we only address N > 0 and

N not a square.

Note 20.B. With N > 0 and N not a square, there is always a solution to

x2 −Ny2 = 1, other than the solution x = ±1 and y = 0. This was first shown by

Joseph-Louis Lagrange (January 25, 1736–April 10, 1813) in 1766. This appears

in his “Solution d’un Problème d’Arithmétique,” in Joseph Alfred Serret (ed.),

Œuvres de Lagrange, volume 1, pp. 671-731 (1867), and in his Additions to Euler’s

Elements of Algebra (1771). We take this result as true, without attempting a

proof.

Definition. An irrational number of the form α = r + s
√

n, where r and s are

integers, it gives a solution of the Pell equation x2 −Ny2 = 1 if r2 −Ns2 = 1.

Note. An example of an irrational number that gives a solution to x2− 2y2 = 1 is

α = r + s
√

2 = 3 + 2
√

2 since r2 −Ns2 = (3)2 − 2(2)2 = 1. Also, for x2 − 7y2 = 1,

α = r + s
√

7 = 8 + 3
√

7 gives a solution since r2 − Ns2 = (8)2 − 7(3)2 = 1. The

choice of the terminology “gives a solution” will be made a bit more clear in our

main theorem.
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Note 20.B. The square root of any positive integer that is not a perfect square,

is irrational. This is Proposition 9 in Book X of Euclid’s Elements of Geometry;

see my online notes for Introduction to Modern Geometry (MATH 4157/5157) on

Section 2.4. Books VII and IX. Number Theory (notice that last note). The proof

that
√

2 is irrational is in my online notes for Mathematical Reasoning (MATH

3000) on Section 6.3. Divisibility: The Fundamental Theorem of Arithmetic in

Theorem 6.31. This proof can be modified to also show that any nonsquare has an

irrational square root. We need this fact in the proof of our first lemma.

Lemma 20.1. If N > 0 is not a square, then x + y
√

N = r + s
√

N if and only if

x = r and y = s.

Note. The next lemma can be verified by simply multiplying out both sides of the

claimed equation.

Lemma 20.2. For any integers a, b, c, d, N ,

(a2 −Nb2)(c2 −Nd2) = (ac + Nbd)2 −N(ad + bc)2.

Lemma 20.3. If α gives a solution of x2 −Ny2 = 1, then so does 1/α.

Lemma 20.4. Let α and β give solutions of x2 −Ny2 = 1, then so does αβ.

https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-2-4.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-3.pdf
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Exercise 20.3. Two solutions of x2−8y2 = 1 are (x, y) = (3, 1) and (17, 6). Apply

Lemma 20.4 to find another.

Solution. We can use the solution to find irrational numbers that “give a solution.”

We take α = (3) − (1)
√

8 = 3 −
√

8 and β = (17) − (6)
√

8 = 17 − 6
√

8. We then

have that

αβ = (3−
√

8)(17−6
√

8) = ((3)(17)+(8)(1)(6))+((3)(6)+(1)(17))
√

8 = 99+35
√

8

gives a solution by Lemma 20.4. So, by the definition of “gives a solution” we have

that (x, y) = (99, 35) is a solution to x2 − 8y2 = 1.

Lemma 20.5. If α gives a solution of x2 − Ny2 = 1, then so does αk for any

integer k, positive, negative, or zero.

Lemma 20.6. Suppose that a, b, c, d are nonnegative and that α = a + b
√

N and

β = c + d
√

N give solutions of x2 −Ny2 = 1. Then α < β if and only if a < c.

Note. Fix N and consider the equation x2 − Ny2 = 1. Consider the set of all

real numbers that give a solution to the equation, G = {r + s
√

N | r2 − ns2 = 1}.

We know by Lemma 20.6 that the elements of this set can be ordered based on

the size of the values r. So we can use this ordering to find a smallest element of

the set G (it will always be 1 + 0
√

N), a second smallest element, and so forth. It

is the second smallest element that we are interested in (notice that this element

corresponds to the smallest nontrivial solution).
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Definition. For equation x2−Ny2 = 1, and the set G = {r+s
√

N | r2−ns2 = 1}

of all real number that give a solution, the smallest number θ in set G greater than

one is a generator for x2 −Ny2 = 1.

Note. Notice that by Note 20.A, a generator always exists (provided N is not a

square). Our main theorem explains the sense in which θ is a generator of solutions.

In turn, this is also how α = r + s
√

N “gives solutions.”

Theorem 20.1. If θ is the generator for xn−Ny2 = 1, then all nontrivial solutions

of the equation with x and y positive are given by θk, k = 1, 2, . . .. That is, if x = r,

y = s is a solution then α = r + s
√

N is some positive power of θ.
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