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Section 21. Bounds for π(x)

Note. In this section we consider the number of primes in the set {1, 2, . . . , n} as

a function of n. For x a real number, let π(x) denote the number of primes less

than or equal to x. We put an upper and lower bound on the function π(x)/ log x

and discuss this in the context of the Prime Number Theorem.

Note. A few values of function π are:

x 1 10 100 1000 10000 105 106 107

π(x) 0 4 25 168 1229 9592 78498 664579

We see that π(x) is increasing, but at a slower rate than x is increasing. A somewhat

detailed history of these ideas is given in a supplement to this section, so we give

a brief history here. Both Adrien-Marie Legendre (September 18, 1752–January

10, 1833) and Carl Friedrich Gauss (April 30, 1777–February 23, 1855) conjectured

that for large x, π(x) is approximately equal to x/ log x. We quickly comment

here that in these notes we use “log x” to indicate the natural logarithm function,

whereas Dudley uses “ln x.” The conjecture is known today as the Prime Number

Theorem.

Note. Prime Number Theorem. As x increases without bound, the ratio of

π(x) to x/ log x approaches 1.
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Note. Pafnuty Chebyshev (May 16, 1821–December 8, 1894) in the 1840s com-

puted constants c1 and c2, both close to 1, such that

c1 <
π(x)

x/ log x
< c2

(see Supplement. The Prime Number Theorem—History for more details and the

values of c1 and c2). Bernhard Riemann (September 17, 1826–July 20, 1866) in a 9-

page article “On the Number of Primes Less Than a Given Magnitude” (published

in the November 1859 issue of Monatsberichte der Königlich Preußischen Akademie

der Wissenschaften zu Berlin) formally introduced the zeta function and set the

stage for the proof of the Prime Number Theorem (and laid the foundations of

research that continues today). A translation appears in the appendix of Harold

Edwards’ Riemann’s Zeta Function, Academic Press 1974 (reprinted by Dover Pub-

lications in 2001), and a translation is online on the Claymath.org website (accessed

3/6/2022). In 1896, Jacques Hadamard (December 8, 1865–October 17, 1963) and

Charles de la Vallée Poussin (August 14, 1866–March 2, 1962) independently proved

the Prime Number Theorem, using complex analysis and properties of Riemann’s

zeta function (in particular, by showing certain complex regions do not contain

zeros of the zeta function).

Note. In this section, we prove a result similar to Chebyshev’s, but much weaker.

We will show

0.173 ≈ 1

4
log 2 <

π(x)

x/ log x
< 32 log 2 ≈ 22.181 for x ≥ 2.

In the process, we establish some lemmas that we will use in the supplement to

this section.

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Supplement-PNT-History.pdf
http://www.claymath.org/sites/default/files/ezeta.pdf
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Note. Recall that for integer n ≥ 1, we define n factorial as n! = n·(n−1)·· · ··3·2·1,

and for n = 0 we define 0! = 1. The binomial coefficient is(
n

r

)
=

n(n− 1)(n− 2) · · · (n− r + 1)

r(r − 1) · · · (2)(1)
=

n!

r!(n− r)!
,

where n ≥ r ≥ 1.

Note. The proof of the theorem in this section involves properties of
(2n

n

)
. Table

1 (next page) gives the factorization for n = 1, 2, . . . , 20. The table suggests some

patterns:

1. All the primes between n and 2n appear with exponent 1.

2. None of the primes between 2n/3 and n appear at all.

3.
(2n

n

)
is always divisible by n + 1.

4. Each prime-power is less than 2n.

Notice that
(2n

n

)
= (2n)!/(n!)2. We are interested in the prime-power decomposition

of
(2n

n

)
. Recall that [x] denotes the greatest integer less than or equal to x.

Lemma 21.1. The highest power of p that divides n! is [n/p]+[n/p2]+[n/p3]+· · · .

Note. We can use Lemma 21.1 to determine how many zeros there are at the end

of 1984!. We do so by finding the highest power of 2 and the highest power of 5 in

1984!. For p = 2, the highest power dividing 1984! is
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Table 1. Exponent of p in the prime-power decomposition of
(2n

n

)
.

@
@

@
@

@@
p

n
2 3 5 7 11 13 17 19 23 29 31 37

1 1

2 1 1

3 2 0 1

4 1 0 1 1

5 2 2 0 1

6 3 1 0 1 1

7 3 1 1 0 1 1

8 1 2 1 0 1 1

9 1 0 1 0 1 1 1

10 2 0 0 0 1 1 1 1

11 2 1 0 1 0 1 1 1

12 1 0 0 1 0 1 1 1 1

13 2 0 2 1 0 0 1 1 1

14 2 3 2 0 0 0 1 1 1

15 3 2 1 0 0 0 1 1 1 1

16 0 2 1 0 0 0 1 1 1 1 1

17 1 3 1 0 1 0 0 1 1 1 1

18 1 1 2 1 1 0 0 1 1 1 1

19 2 1 2 1 1 0 0 0 1 1 1 1

20 1 2 1 1 1 1 0 0 1 1 1 1
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[
1984

2

]
+

[
1984

4

]
+

[
1984

8

]
+

[
1984

16

]
+

[
1984

32

]
+

[
1984

64

]
+

[
1984

128

]
+

[
1984

256

]
+

[
1984

512

]
+

[
1984

1024

]
= 992 + 496 + 248 + 124 + 62 + 31 + 15 + 7 + 3 + 1 = 1979.

For p = 5, the highest power dividing 1984! is[
1984

5

]
+

[
1984

25

]
+

[
1984

125

]
+

[
1984

625

]
= 396 + 79 + 15 + 3 = 493.

So 1984! is divisible by 2× 5 = 10 to the 493 power; that is, 1984! ends with 493

zeros.

Note. The next lemma is called “Legendre’s Theorem” in Martin Aigner and

Günter Zielger’s Proofs from THE BOOK, 6th Edition, Springer (2018); see page

10.

Lemma 21.2 The highest power of p that divides

(
2n

n

)
is

[2n/p]− 2[n/p] + 2[n/p2]− 2[n/p2] + [2n/p3]− 2[n/p3] + · · · .

Lemma 21.3. For any x, [2x]− x[x] ≤ 1.

Note. The next lemma is a vital step in establishing our bounds on π(x)/(x/ log x).

Lemma 21.4. Each prime-power in the prime-power decomposition of

(
2n

n

)
is

less than or equal to 2n.
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Note. Next we establish bounds on

(
2n

n

)
.

Lemma 21.5. For n ≥ 1, we have 2n ≤
(

2n

n

)
≤ 22n.

Note. Three more lemmas, and we will be ready to prove our bounds on
π(x)

x/ log x
.

Lemma 21.6. For n ≥ 2, we have π(2n)− π(n) ≤ (2n log 2)/ log n.

Lemma 21.7. For n ≥ 2, we have π(2n) ≥ (n log 2)/ log(2n).

Lemma 21.8. For r ≥ 1, we have π(22r) < 22r+2/r.

Note. We now have the equipment to prove our main result.

Theorem 21.1. For x ≥ 2, we have

1

4
log 2(x/ log x) ≤ π(x) ≤ (32 log 2)(x/ log x).

Revised: 4/2/2022


