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Section 22. Formulas for Primes

Note. In this section we consider, in a sense, the distribution of primes. We

consider primes in arithmetic progression, and look for functions that generate

primes. We also prove Bertrand’s Theorem, which state that for any n ≥ 2, there

is a prime p between n and 2n.

Note. Since the Fundamental Theorem of Arithmetic/Unique Factorization The-

orem (Theorem 2.2) tells us that prime numbers are the “building blocks” of all

integers, we are interested is finding prime numbers! One might fantasize about a

function p(n) that produces for each n ∈ N, then nth prime. Dudley declares such

a function “probably beyond all reason” (see page 173). Perhaps, then, there is

a function (represented by a formula) that produces nothing but primes? We will

show below that no polynomial function will work for this (in Theorem 22.C below).

First, if we try a first degree polynomial function f(n) = an + b then we see that

the resulting primes would be evenly spaced; that is, they would form an arithmetic

progression with difference a. Some examples of finite arithmetic progressions of

prime numbers are: 3, 5, 7 (where a = 2); 7, 37, 67, 127, 157 (where a = 30); and

199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089 (where a = 210). In fact,

such an arithmetic progression of prime numbers must be finite, as we now prove.

Theorem 22.A. An arithmetic progression of prime numbers must be finite in

length.
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Note. Dudley states that (see page 173) “it is not known if there exist arbitrarily

long arithmetic progressions of primes.” But Dudley’s book was written in 1978. In

2008 Ben Green and Terence Tao published: “The primes contain arbitrarily long

arithmetic progressions,” Annals of Mathematics, 167(2), 481–547 (2008). A copy

is available online on the Annals of Mathematics webpage (accessed 3/9/2022).

Note. We now turn our attention from arithmetic progressions or primes, to the

number of primes in the sequence f(n) = an + b. German mathematician Peter

Lejeune Dirichlet (February 13, 1805–May 5, 1859) proved in 1837:

Theorem 22.B. Dirichlet’s Theorem.

For positive integers a and b, where (a, b) = 1, there are infinitely many primes of

the form an + b, where n is a positive integer. That is, there are infinitely many

primes that are congruent to b modulo a.

Dirichlet’s proof was inspired by work done by Euler in the 1700s which related

the Riemann Zeta function to the distribution of primes. Dirichlet used “L-series”

and published his result in “Proof of the theorem that every unbounded arithmetic

progression, whose first term and common difference are integers without common

factors, contains infinitely many prime numbers,” Abhandlungen der Königlichen

Preußischen Akademie der Wissenschaften zu Berlin, 48, 45-71 (1837). A proof

can be found in Graham Everest and Thomas Ward’s An Introduction to Number

Theory, NY: Springer (2005) in Chapter 10. Primes in an Arithmetic Progression.

I am preparing online notes for ETSU’s Number Theory (MATH 5070; a class that

has been “mothballed” since 2015) based on this book.

https://annals.math.princeton.edu/wp-content/uploads/annals-v167-n2-p03.pdf
https://faculty.etsu.edu/gardnerr/5070/Number-Theory-notes-Everest-Ward.htm
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Note 22.A. Notice that the condition (a, b) = 1 is necessary since, for example, the

sequence {6n+3} contains one prime and the sequence {6n+4} contains no primes.

In some cases, it is easy to show that the sequence contains an infinite number of

primes. Consider the sequence {3n+2} and ASSUME that it only contains a finite

number of primes, p1, p2, . . . , pk. Notice that the sequence {3n + 2}contains all

natural numbers that are 2 (mod 3), and so it contains all primes that are 2 (mod

3). Let N = p1p2 · · · pk. If N ≡ 1( mod 3), then N + 1 ≡ 2 (mod 3) and so N + 1

must have at least one prime divisor congruent to 2 (mod 3) (it can’t have a divisor

that is 0 (mod 3) or else it we would have N + 1 ≡ 0 (mod 3), and it all of it’s

divisors are 1 (mod 3) then we would have N + 1 ≡ 1 (mod 3)). But N + 1 ≡ 1

(mod pi) for each i ∈ {1, 2, . . . , k}, so the prime divisor of N + 1 cannot be in the

list of 2 (mod 3) primes p1, p2, . . . , pk. If N ≡ 2 (mod 3), then N + 3 ≡ 2 (mod 3),

and N + 3 must have a prime divisor congruent to 2 (mod 3) (similar to above).

But N + 3 ≡ 3 (mod pi) for each i ∈ {1, 2, . . . , k}, so the prime divisor of N + 3

cannot be in the list of 2 (mod 3) primes p1, p2, . . . , pk. So in both cases, we have

a CONTRADICTION, so that the assumption that there are only finitely many

primes in the sequence {3n+2} is false and hence there are infinitely many primes

in the sequence.

Theorem 22.C. If f(n) = akn
k + ak−1n

k−1 + · · ·+ a2n
2 + a1n + a0 is a polynomial

function with integer coefficients and if r is such that f(r) ≡ 0 (mod p) for some

p, then f(r + mp) ≡ f(r) ≡ 0 (mod p) for all m ∈ N. That is, no polynomial can

have only prime values.
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Note. Euler observed that the polynomial n2+n+41 gives distinct primes for inte-

gers n = 0, 1, 2, . . . , 39. He gave this in his 1772 Nouveaux Mémoires de l’Académie

royale des Sciences, Berlin (page 36). This is called a prime generating polyno-

mial. For other examples, see Wolfram’s “Prime-Generating Polynomial” website

(accessed 3/9/2022).

Note 22.B. We make a passing comment that we can construct a polynomial

(maybe not with integer coefficients) that “generates” as many (but finite) prime

numbers as we want. Dudley mentions (on page 174), for example, that with

60f(x) = 7x5 − 85x4 + 355x3 − 575x2 + 418x + 180

we have f(0) = 3, f(1) = 5, f(2) = 7, f(3) = 11, f(4) = 13, and f(5) = 17. So the

5th degree polynomial 60f(x) generates the 6 consecutive prime numbers given.

This takes advantage of the fact that for d + 1 points in the Cartesian plane with

different x values, we can find a degree (at most) d polynomial that passes through

each of these points. These polynomials are called Lagrange polynomials; for details,

see my online notes for Numerical Analysis (MATH 4257/5257) on Section 3.1.

Interpolation and the Lagrange Polynomial. Though a Lagrange polynomial will

pass through the given points, it will oscillate wildly in the process and will not be

useful for interpolation or extrapolation.

https://mathworld.wolfram.com/Prime-GeneratingPolynomial.html
https://faculty.etsu.edu/gardnerr/4257-Numerical-Analysis/Notes-NA/Numerical-Analysis-BFB10-3-1.pdf
https://faculty.etsu.edu/gardnerr/4257-Numerical-Analysis/Notes-NA/Numerical-Analysis-BFB10-3-1.pdf
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Note. As opposed to polynomials, we might try exponential functions. We can

combine exponential functions with the greatest integer function. For example,

f(n) = [(3/2)n] is prime for n = 2, 3, 4, 5, 6, and 7 since these give 2, 3, 5, 7, 11, and

17, respectively. Dudley observes on page 175: “No one has proved that a formula

like f(n) = [θn] cannot always give a prime. Nor is it known whether [θn] can be

prime infinitely often. Such questions seem hopelessly difficult.” This being said,

the next result, due to W. H. Mills in “A Prime-Representing Function,” Bulletin

of the American Mathematical Society, 53(6), 604 (June 1947) (and available online

on the Project Euclid webpage) appears very impressive!

Theorem 22.1. There is a real number θ such that [θ3n

] is a prime for all n ∈ N.

Note. Though the result appears impressive, as we will see in the proof below it is

not of any practical use. The construction of θ depends on being able to recognize

arbitrarily large primes, and the point of finding the formula is to use it to generate

arbitrarily large primes! For the proof, we need two results from Analysis 1 (MATH

4217/5217). We state them here as lemmas. Both follow from the fact that a

bounded monotone sequence of real numbers converges (see my online notes for

Analysis 1 on Section 2.1. Sequences of Real Numbers and Theorem 2-6).

Lemma 22.A. If a sequence (of real numbers) u1, u2, . . . , un, . . . is bounded above

and nondecreasing, then it has limit θ as n increases without bound; that is,

limn→∞ un = θ.

https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society-new-series/volume-53/issue-6/A-prime-representing-function/bams/1183510803.full
https://faculty.etsu.edu/gardnerr/4217/notes/2-1.pdf
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Lemma 22.B. If a sequence (of real numbers) v1, v2, . . . , vn, . . . is bounded below

and nonincreasing, then is has a limit ϕ as n increases without bound; that is,

limn→∞ vn = ϕ.

Note. We take one more result as given. It is proved in W. H. Mills’ one page 1947

paper using another inequality that establishes the existence of integer A referenced

in the result.

Theorem 22.D. (Mills, 1947). There is an integer A such that if n > A, then

there is a prime p such that n3 < p < (n + 1)3 − 1.

Note. We are now ready to give a proof of Theorem 22.1.

Note. Now that we have been through the proof, we see that it is based on the

creation of an infinite, strictly increasing sequence sequence of prime numbers {pn}

(notice that we are not saying that this is all prime numbers, but just an increasing

sequence of distinct primes). The sequence is used to define a bounded increasing

sequence {un} = {p3−n

n } that converges to θ. We know of the existence of the

primes pn by Theorem 22.D, but we have no idea what the primes are (nor do we

have any idea what parameter A of Theorem 22.D is). So this is not a practical

way to generate an infinite number of primes, since it requires an infinite number

of known primes first!
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Note. The next result is commonly known as Bertrand’s Postulate, Bertrand’s

Theorem, the Bertrand-Chebyshev Theorem, or Chebyshev’s Theorem. It was first

conjecture in 1845 by French mathematician Joseph Bertrand (March 11, 1822–

April 5, 1900) and verified by him for parameter n up to three million (thus the

“postulate” status). It was proved by Pafnuty Chebyshev (May 16, 1821–December

8, 1894) in his “Mémoire sur les nombres premiers,” Journal de mathématiques

pures et appliquées, Série 1, 366-390 (1852). A copy of Chebyshev’s paper is avail-

able online at MathDocs website (accessed 3/10/2022).

Theorem 22.2. Bertrand’s Theorem.

For all integers n ≥ 2, there is a prime p such that n < p < 2n.

Note 22.C. We break up the proof of Bertrand’s Theorem given by Dudley. First,

notice that the sequence of primes 2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259,

2503, 9973 shows that Bertrand’s Theorem holds for n ≤ 9973 since each prime in

the sequence is less than twice the one before it. Next, we present two lemmas.

Lemma 22.E. For n ≥ 2, we have
∏

p≤n p ≤ 22n where p is prime.

Lemma 22.F. For n ≥ 1, we have

(
2n

n

)
≥ 22n

2n
.

Note. We are now ready to give a proof of Bertrand’s Theorem (Theorem 22.2).

http://sites.mathdoc.fr/JMPA/PDF/JMPA_1852_1_17_A19_0.pdf
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Note. In Theorem 22.1, we proved the existence of a formula that generates primes

(but with the warnings of its uselessness, discussed above). The proof depended

on a result we did not prove, namely Theorem 22.D of Mills (1947). We now state

a related result, the proof of which is based only on results proved in these notes.

Theorem 22.3. There exists a real number θ such that [2θ], [22θ

], [222θ

], . . . are all

prime.

Note. Recall that Wilson’s Theorem (Theorem 6.2) states: Positive integer p is

prime if and only if (p − 1)! ≡ −1 (mod p). That is, (p − 1)! + 1 ≡ 0 (mod p)

or
(p− 1)! + 1

p
is an integer if and only if p is prime. So we can define f(n) =

cos2 π

(
(n− 1)! + 1

n

)
and then f(n) = 1 if and only if n is prime (and f(n) < 1 if

n is composite). So we can use f to count primes, and we have π(x) =
∑

2≤n≤x

[f(n)].

Note. Dudley ends his book with a “striking result,” which is also based on Wil-

son’s Theorem. The result appeared in James P. Jones, Daihachiro Sato, Hideo

Wada and Douglas Wiens’ “Diophantine Representation of the Set of Prime Num-

bers,” The American Mathematical Monthly, 83(6), 449–464 (June-July, 1976). A

copy of the paper can be found on The University of Maryland webpage of Chris

Laskowski and it is also available through JSTOR (though this will require you to

log in with your ETSU username and password). The result is:

http://www2.math.umd.edu/~laskow/Pubs/713/Diorepofprimes.pdf
http://www2.math.umd.edu/~laskow/Pubs/713/Diorepofprimes.pdf
https://www.jstor.org/stable/2318339
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Theorem (Jones et al). The set of prime numbers is identical with the set of

positive values taken on by the following polynomial of degree 25 in the 26 variables

x1, x2, . . . , x26 as the variables range over the nonnegative integers:

(x11 + 2){1− [x23x26 + x8 + x10 − x17]
2

−[(x7x11 + 2x7 + x11 + 1)(x8 + x10) + x8 − x26]
2

−[2x14 + x16 + x17 + x26 − x5]
2

−[16(x11 + 1)3(x11 + 2)(x14 + 1)2 + 1− x2
6]

2

−[x3
5(x5 + 2)(x1 + 1)2 + 1− x2

15]
2

−[(x2
1 − 1)x2

25 + 1− x2
24]

2 − [16x2
18x

4
25(x

2
1 − 1) + 1− x2

21]
2

−[(x1 + x2
21(x

2
21 − x1)

2 − 1)(x14 + 4x4x25)
2 + 1− (x24 + x3x21)

2]2

−[x14 + x12 + x22 − x25)
2 − [(x2

1 − 1)x2
12 + 1− x2

13]
2

−[x1x9 + x11 + 1− x12 − x9]
2

−[x16 + x12(x1 − x14 − 1) + x2(2x1x14 + 2x1 − x2
14 − 2x14 − 2)− x13]

2

−[x17 + x25(x1 − x16 − 1) + x19(2x1x16 + 2x1 − x2
16 − 2x16 − 2)− x24]

2

−[x26 + x16x12(x1 − x16) + x20(2x1x16 − x2
16 − 1)− x16x13]

2}.

Revised: 4/17/2022


