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Section 3. Linear Diophantine Equations

Note. In this section, we define linear Diophantine equations. We give necessary

and sufficient conditions for the existence of integer solutions to such equations.

We consider more general Diophantine equations, which are studied in more detail

in later sections.

Note. Dudley introduces linear Diophantine equations with the following problem:

In a corral there are cowboys and an odd number of horses. There are

20 legs in all. How many legs belong to horses?

With h as the number of horses and c as the number of cowboys (both positive

integers), we need solution(s) to the equation 4h + 2c = 20. Of course there are

infinitely many solutions using real numbers, but it is not immediately obvious that

there are positive integer solutions (well, it is here since the numbers are small, but

in general it might not be so obvious). This is an example of a linear Diophantine

equation. We will explore it again below.

Definition. An equation of the form ax + by = c, where a, b, and c are integers,

is a linear Diophantine equation. A solution to the equation is a pair of integers x

and y.

Note. Other types of Diophantine equations are of the form x2 + y2 = z2 (con-

sidered in Section 18), x4 + y4 = z4 (considered in Section 19), and x2 − 2y2 = 1

(considered in Section 20). In each case, we seek integer solutions x, y, and z.
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Note. Diophantus is sometimes called the “father of algebra.” He presented his

work on algebraic equations and number theory in his Arithmetica. Though his

mathematical work is known, details about his life are vague at best; for exam-

ple, the dates of when he lived (circa 200 CE–circa 284 CE) are rough estimates.

In Arithmetica he considers three types of quadratic equations: ax2 + bx = c,

ax2 = bx + c, and axx + c = bx. The reason for this is that he would not allow

the use of negative numbers (in fact negative numbers become a widely accepted

part mathematics due to the development of the theory of equations only in the

16th century, largely due to work by Tartaglia and Cardano; see my online notes

for Introduction to Modern Algebra [MATH 4127/5127] on A Students Question:

Why The Hell Am I In This Class? for some details. . . complex numbers also attain

a level of acceptance at this time). So he would only accept positive, rational so-

lutions to these equations. He considers polynomials in x that can take on a value

that is a perfect square or perfect cube. Diophantus introduced an algebraic sym-

bolism that used an abbreviation for the unknown and the powers of the unknown.

You might get an appreciation for the difficulty of arithmetic work in Diophantus’

time; remember that the numerals which we use, the “Arabic numerals,” were not

used until after the 1,000 CE. Other works by Diophantus include “On Polygonal

Numbers,” “The Porisms” (a collection of lemmas), and “Preliminaries to the Ge-

ometric Elements.” Arithmetica was translated from Greek into Latin in the 1400s

and this lead to the spread of Diophantus’ ideas. It was a 1621 copy by Bachet from

which Pierre de Fermat studied and in the margins of his copy in which he wrote

that he found a proof that there are no positive integer solutions x, y, x to the

equation xn +yn = zn when integer n is greater than 2 (this lead to “Fermat’s Last

https://faculty.etsu.edu/gardnerr/4127/notes/Why-am-I-here.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/Why-am-I-here.pdf
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Theorem,” which remained unproved from the mid 1600s to the late 1900s; we’ll

discuss this more in Section 17). You can read Arthmetica online at: Diophantus of

Alexandria, A Study in the History of Greek Algebra, 2nd Edition, by Sir Thomas

L. Heath (Cambridge University Press, 1910) (accessed 7/5/2021).

Diophantus of Alexandria (circa 200–circa 284)

The image is from Greatest Greeks webpage. The biographical information is from

MacTutor History of Mathematics Archive page on Diophantus. Both accessed

7/5/2021.

Note. Not every linear Diophantine equation has an integer solution. For example,

2x + 4y = 5 has no solution since 2x + 4y is even and 5 is not. We now return

to the horses and cowboys problem stated at the beginning of this section. We

required positive integers h and c such that 4h + 2c = 20. We can rearrange this

to get h = (10 − c)/2. Since we require positive integer solutions, we see that we

can take c to be between 1 and 9. Also, c must be even so that h is an integer.

This gives us the four solutions (c, h) of (2, 4), (4, 3), (6, 2), and (8, 1). But in

the given problem, we required that “there are cowboys [plural; at least 2] and an

https://archive.org/details/diophantusofalex00heatiala/page/n5/mode/2up
https://archive.org/details/diophantusofalex00heatiala/page/n5/mode/2up
https://greatestgreeks.wordpress.com/2017/04/04/diophantus/
https://mathshistory.st-andrews.ac.uk/Biographies/Diophantus/
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odd number of horses.” Of the four solutions, the only one that satisfies these two

conditions is (c, h) = (4, 3). To answer the posed question “How many legs belong

to horses?,” we see that we have 4h = 4 × 3 = 12 legs.

Note. We want an organized way to determine if a linear Diophantine equation

has a solution, and when it does we want to find the solutions. In our first result,

we show that if a linear Diophantine equation has one solution then in has infinitely

many solutions. By “solution,” we mean a solution using integers.

Lemma 3.1. If x = x0 and y = y0 is a solution of ax+by = c, then so is x = x0+bt

and y = y0 − at for any integer t ∈ Z.

Note. We now give necessary and sufficient conditions for a linear Diophantine

equation to have a solution.

Lemma 3.2. If (a, b) 6 | c then ax + by = c has no solutions, and if (a, b) | c then

ax + by = c has a solution.

Note 3.3.A. If the linear Diophantine equation ax + by = c has a solution, then

by Lemma 3.2 we know that (a, b) | c. We denote (a, b) = d so that we can then

divide both sides of ax+ by = c to create a new linear Diophantine equation (since

the numbers involved will remain integers by the divisibility conditions). Since
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d | a then a = da′, since d | b then b = db′, and since d |, c then c = cc′ (for some

integers a′, b′, and c′). Then ax + by = c becomes a′x + b′y = c′ where (a′, b′) = 1

by Theorem 1.1. So if a linear Diophantine equation has solutions, then we can

find the solutions by considering an equation whose coefficients are relatively prime

(and in this equation the coefficients are smaller in absolute value). Lemma 3.1

gives infinitely many solutions which we show below (in Lemma 3.3) are all of the

solutions.

Exercise 3.3(c). Find all solutions of 14x + 35y = 91.

Lemma 3.3. Suppose that (a, b) = 1 and x = x0, y = y0 is a solution of ax+by = c.

Then all solutions of ax + by = c are given by x = x0 + bt, y = y0 − at where t ∈ Z.

Note. Notice from Note 3.3.A that if we start with equation ax + by = c (which

has a solution) then we can modify the to get a′x+b′y = c′ where (a′, b′) = 1, which

then has solutions x = x0 + b′t = x0 + (b/(a, b))t, y = y0 − a′t = x0 − (a/(a, b))t

where x = x0, y = y0 is a solution of a′x + b′y = c′. This observation allows us to

combine Lemmas 3.1, 3.2, and 3.3 to get the following.

Theorem 3.1. The linear Diophantine equation ax + by = c has no solutions if

(a, b) 6 | c. If (a, b) | c, then there are infinitely many solutions,

x = r +
b

(a, b)
t, y = s − a

(a, b)
t where t ∈ Z

and x = r, y = s is some solution.
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Note. We are still left with the problem of finding some solution to ax + by = c

on which we can base the general solution. We will use congruences in Section 5

to find such a solution x = r, y = s.
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