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Section 5. Linear Congruences

Note. In this section, we consider congruence relations of the form ax ≡ b (mod

m). We give conditions under which solutions do and do not exist and we enumerate

the number of solutions.

Definition. A linear congruence is a congruence relation of the form ax ≡ b

(mod m) where a, b, m ∈ Z and m > 0. A solution is an integer x which makes the

congruence relation true AND x is a least residue (mod m) (that is, 0 ≤ x ≤ m−1).

Note. The congruence relation ax ≡ b (mod m) has a solution if the (“unknown”)

integers x (where 0 ≤ x ≤ m − 1) and k satisfy ax = b + km. But this is a linear

Diophantine equation in the unknowns x and k. Theorem 3.1 shows how to solve

linear Diophantine equations, so we will apply this here.

Note. If integer r is a solution to ax ≡ b (mod m), then there are infinitely many

other integers x that also satisfy the equation since for each x = r + km and for all

integers k we have: a(r + km) = ar + km ≡ ar (mod m) ≡ b (mod m).

Exercise 5.1. Construct congruences modulo 12 with no solutions, just one solu-

tion, and more than one solution.

Solution. Consider 2x ≡ 1 (mod 12). Since 2x is even for all x ∈ Z , but any
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number which is 1 (mod 12) is odd, then there are no solutions to this equation.

Consider x ≡ 1 (mod 12). The unique solution is x = 1.

Consider 2x ≡ 2 (mod 12). Then x = 1 and x = 7 are solutions. �

Note. We want to quantify the number of solutions for a linear congruence. This

is accomplished in Theorem 5.1, which is based on the next three lemmas.

Lemma 5.1. If (a, m) - b then ax ≡ b (mod m) has no solutions.

Note. With a = 2, b = 1, and m = 12, we see that (a, m) = (2, 12) = 2. So

(a, m) = 2 - 1 = b, and by Lemma 5.1 we see (again) that 2x ≡ 1 (mod 12) has no

solution.

Lemma 5.2. If (a, m) = 1 then ax ≡ b (mod m) has exactly one solution.

Note 5.A. In the proof of Lemma 5.2, we showed that two least residues modulo

m are congruent (mod m) then they are equal. We will use the idea again.

Note 5.B. Before we state the result giving the number of solutions to ax ≡ b (mod

m), we explain some techniques of solving such equations. We can manipulate the

equation until cancellation is a possibility. For example, to solve 4x ≡ 1 (mod 15),

can can equivalently consider the equation 4x ≡ 16 (mod 15) which has the unique
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solution x = 4; uniqueness follows from Lemma 5.2. As another example, consider

14x ≡ 27 (mod 31) (which also has a unique solution by Lemma 5.2). First we

consider the equivalent equation 14x ≡ 27 + 31 ≡ 58 (mod 31), and we can cancel

a factor of 2 to get 7x ≡ 29 (mod 31). We continue adding multiples of 31 until we

can cancel the 7: 7x ≡ 29 ≡ 31 ≡ 91 (mod 31). We then have that x = 13 as the

solution.

Note 5.C. We can use this method to solve linear Diophantine equations ax+by =

c. This single equation implies the two linear congruences ax ≡ c (mod b) and

by ≡ c (mod a). Solving one equation with the method described in Note 5.B leads

to the solution of the original equation.

Example 5.4. Solve (a) 8x ≡ 1 (mod 15), and (b) 9x + 10y = 11.

Solution. (a) We modify 8x ≡ 1 (mod 15) to 8x ≡ 1 + 15 ≡ 16 (mod 15), and

then we can divide out the common factor of 8 to get the solution x = 2.

(b) The linear Diophantine equation 9x + 10y = 11 implies the two linear con-

gruences 9x ≡ 11 (mod 10) and 10y ≡ 11 (mod 9). The second linear congruence

can be solved as 10y ≡ 11 ≡ 11 + 9 ≡ 20 (mod 9), and we can cancel a factor of 10

to get y = 2 as the solution or, more generally, y ≡ 2 (mod 9). So we take y = 2+9t

where t is an integer. Substituting this into the linear Diophantine equation give

9x + 10(2 + 9t) = 11 or 9x = 11 − 20 − 90t = −9 − 90t or x = −1 − 10t where t

is an integer. So all the solutions to the linear Diophantine equation are given by

x = −1− 10t and y = 2 + 9t where t ∈ Z.



Section 5. Linear Congruences 4

Note. In each of the examples above of the form ax ≡ b (mod m), we have the

greatest common divisor (a, m) = 1. In the event that (a, m) 6= 1, we can apply

Theorem 4.5. For example, with 6x ≡ 15 (mod 33) we have (a, m) = (6, 33) = 3

and by Theorem 4.5 (with c = 3) we have 2x ≡ 5 (mod 11). With the method of

Note 5.B, we get 2x ≡ 5 ≡ 5+11 ≡ 16 (mod 11) and so x = 8 is the solution to this

equation. All values of x which satisfy this equation are of the form x ≡ 8 (mod

11). So the solutions to the original equation (which we take modulo 33) 6x ≡ 15

(mod 33) are x = 8, 19, 30. Notice that we get 3 solutions and (a, m) = 3. This is

not a coincidence, as we now show.

Lemma 5.3. Let d = (a, m). If d | b then ax ≡ b (mod m) has exactly d solutions.

Note. Lemmas 5.1, 5.2, and 5.3 combine to yield the following result which gives

the number of solutions to ax ≡ b (mod m) in terms of the greatest common divisor

(a, m).

Theorem 5.1. The linear congruence ax ≡ b (mod m) has no solutions if (a, m) - b.

If (a, m) | b then there are exactly (a, m) solutions.

Note 5.D. We now turn out attention to the Chinese Remainder Theorem. The

first known reference to a problem related to the Chinese Remainder Theorem is

in Sun Zi’s Sunzi suanjing (in English, “Sun Zi’s Mathematical Manual”). It is

estimated that Sun Zi lived between about 400 and 460, but little is known about
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him and these dates are debatable. In Problem 26 of Chapter 3, Sun Zi states the

following problem:

“Suppose we have an unknown number of objects. When counted in

threes, 2 are left over, when counted in fives, 3 are left over, and when

counted in sevens, 2 are left over. How many objects are there?”

(This historical information on Sun Zi is from the MacTutor History of Mathematics

Archive biography on Sun Zi, accessed 10/1/2021.) With x as the number of

objects, this problem translates into solving the three congruences:

x ≡ 1 (mod 3), x ≡ 2 (mod 5), and x ≡ 3 (mod 7).

Note. We now solve Sun Zi’s problem. The first congruence x ≡ 1 (mod 3) implies

that x = 1 + 3k1 for some k1 ∈ Z. With this in the second congruence, we have

1 + 3k1 ≡ 2 (mod 5) which implies (by the method of Note 5.B) that k2 ≡ 2 (mod

5), or that k1 = 2+5k2 where k2 ∈ Z. Then x = 1+3k1 = 1+3(2+5k2) = 7+15k2

satisfies the first two congruences. This then requires from the third congruence

that x = 5 + 15k2 ≡ 3 (mod 7), or (reducing modulo 7) k2 ≡ 3 (mod 7), or that

k2 = 3 + 7k3 where k3 ∈ Z. Then x = 7 + 15k2 = 7 + 15(3 + 7k3) = 52 + 105k3

where k3 ∈ Z satisfies all three congruences. That is, x ≡ 52 (mod 105) satisfies

the system of linear congruences. Notice that 105 is the product of 3, 5, and 7 (and

these are pairwise relatively prime). The Chinese Remainder Theorem addresses

this type of problem.

https://mathshistory.st-andrews.ac.uk/Biographies/Sun_Zi/
https://mathshistory.st-andrews.ac.uk/Biographies/Sun_Zi/
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Theorem 5.2. The Chinese Remainder Theorem.

The system of congruences x ≡ ai (mod mi) for i = 1, 2, . . . , k, where (mi, mj) = 1

if i 6= j, has a unique solution modulo m1m2 · · ·mk.
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