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Section 6. Fermat’s and Wilson’s

Theorems

Note. In this section, we prove two theorems concerning congruences modulo a

prime. The results are:

Theorem 6.1. Fermat’s (Little) Theorem. If p is prime and the greatest

common divisor (a, p) = 1, then ap−1 ≡ 1 (mod p).

Theorem 6.2. Wilson’s Theorem. Positive integer p is prime if and only if

(p− 1)! ≡ −1 (mod p).

Some of the material in this section is also in my online notes for Mathematical

Reasoning (MATH 3000) on Section 6.5. Introduction to Euler’s Function.

Note. Pierre de Fermat (August 17, 1601–January 12, 1665) was a French lawyer,

government official, and amateur mathematician.

Pierre de Fermat (August 17, 1601–January 12, 1665),

image from Fermat’s Library website.

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-5.pdf
https://fermatslibrary.com/
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He was friends with several mathematicians of his time and he corresponded with

many others. He was recognized as a top mathematician, but he did not bother to

give clean, clear proofs of his ideas and he did not publish his work (though some of

his ideas made it into publication as supplements to the work of others). He worked

in analytic geometry and circulated a manuscript on this topic in 1636 (a year before

Descartes published his La géométrie). He studied maxima, minima, and tangents

to curves (and geometric series) before Newton and Leibniz. He corresponded

with Blaise Pascal (June 13, 1623–August 19, 1662) in 1654 about calculating

the appropriate payout for a game which was interrupted (and left “unfinished”).

This required predicting how the game would end. This correspondence laid the

foundations for the idea of probability and Fermat and Pascal are viewed as the

founders of probability theory (with Fermat taking the lead role). Here, we are

most interested in Fermat’s contributions to number theory. While studying perfect

numbers (a positive integer is perfect if it is equal to the sum of its positive divisors,

excluding itself; examples of perfect numbers are 6 and 28—we consider these ideas

in Section 8. Perfect Numbers), Fermat discovered his “Little Theorem,” which we

call in this section simply “Fermat’s Theorem” (Theorem 6.1). More famous is

“Fermat’s Last Theorem.” In the margin of a copy of Diophantus’ Arithmetica,

Fermat had written that he had “discovered a truly remarkable proof” that the

equation xn +yn = zn has no nonzero solutions x, y, z for n > 2; it was common for

Fermat to make such claims. In 1670 Fermat’s son Samuel published an edition of

Arithmetica along with his father’s notes and this called attention to the problem.

The fame of the problem spread as more and more mathematicians failed to find

a proof. A proof was finally presented about 300 years later by Andrew Wiles in

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-8.pdf
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1994 (using techniques unavailable to Fermat, so it is agreed that Fermat in fact did

not have a “truly remarkable proof”). We give an elementary proof of “Fermat’s

Last Theorem” (or, as it’s called in Dudley, “Fermat’s Conjecture”; remember,

this book is copyright in 1978) for the case n = 4 in Theorem 17.1 of Section 17.

Infinite Descent and Fermat’s Conjecture. Another problem of Fermat’s which we

will explore in these notes concerns finding all integer solutions x, y of the equation

x2 − Ny2 = 1; see Section 20. x2 − Ny2 = 1. This historical information is based

on the Wikipedia webpage on Fermat and the MacTutor History of Mathematics

Archive page on Fermat.

Note. You may also see a proof of Fermat’s (Little) Theorem in Introduction to

Modern Algebra (MATH 4127/5127). The proof is based on (1) the fact that the

nonzero elements of Zp, where p is prime, form a group under multiplication, and

(2) the fact that the order of a subgroup divides the order of a (finite) group (this

is Lagrange’s Theorem from group theory). See my online notes for Introduction

to Modern Algebra on Section IV.20. Fermat’s and Euler’s Theorems.

Note. Wilson’s Theorem seems to have been first addressed by Ibn al-Haytham

(circa 965– circa 1040). English mathematician John Wilson (August 6, 1741–

October 18, 1793), who taught at Cambridge, is best known for “Wilson’s Theo-

rem,” which was first published by Edward Waring (1736–August 15, 1798), though

without proof, and was first proved by Joseph-Louis Lagrange (January 25, 1736–

April 10, 1813) in 1773. Evidence in his private papers reveal that Gottfried Wil-

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-17.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-17.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-20.pdf
https://en.wikipedia.org/wiki/Pierre_de_Fermat
https://mathshistory.st-andrews.ac.uk/Biographies/Fermat/
https://mathshistory.st-andrews.ac.uk/Biographies/Fermat/
https://faculty.etsu.edu/gardnerr/4127/notes/IV-20.pdf
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helm Leibniz (July 1/June 21 1646–November 14, 1716) was also aware of the

result.

Ibn al-Haytham John Wilson Joseph-Louis Lagrange

Images from Wikipedia (for al Haytham and Lagange) and

MacTutor History of Mathematics Archive (for Wilson), accessed 10/14/2021.

Note. The text book declares Wilson’s Theorem “remarkable because it gives

a condition both necessary and sufficient for a number to be prime.” (See page

43.) Of course (as Dudley also observes), the presence of the factorial makes this

computationally impractical because of the large resulting numbers. Notice that

both Fermat’s and Wilson’s Theorems are trivially true for p = 2, so in what follows

we can assume that prime p is greater than 2. Before proving Fermat’s Theorem,

we need a lemma.

https://en.wikipedia.org/wiki/Ibn_al-Haytham
https://en.wikipedia.org/wiki/Joseph-Louis_Lagrange
https://mathshistory.st-andrews.ac.uk/Biographies/Wilson_John/


Section 6. Fermat’s and Wilson’s Theorems 5

Lemma 6.1. If the greatest common divisor (a, m) = 1, then the least residues of

(1) a, 2a, 3a, . . . , (m− 1)a (mod m) are (in some order) (2) 1, 2, 3, . . . ,m− 1.

In other words, if (a, m) = 1, then each integer is congruent (mod m) to exactly

one of a, 2a, 3a, . . . , (m− 1)a.

Note. We are now equipped to prove Fermat’s (Little) Theorem (Theorem 6.1).

Note. We can also express the conclusion of Fermat’s Theorem as ap ≡ a (mod p).

In fact, if (a, p) 6= 1 then we must have (a, p) = p since p is prime, and then ap ≡ 0

(mod p) and a ≡ 0 (mod p), to that we have the following corollary to Fermat’s

Theorem.

Corollary 6.A. If p is prime then ap ≡ a (mod p) for all positive a.

Example 6.2. Calculate 22 and 210 (mod 11).

Solution. Of course 22 ≡ 4 (mod 11). So 24 = (22)2 ≡ 42 (mod 11) ≡ 5 (mod 11)

and 28 = (24)2 ≡ 42 (mod 11) ≡ 5 (mod 11). Then 210 = (22)(28) ≡ (4)(3) (mod

11) ≡ 1 (mod 11), as predicted by Fermat’s Theorem. �

Note. We now consider a proof of Wilson’s Theorem. We need two preliminary

lemmas. Notice that the next lemma refers to a number of solutions to the quadratic

congruence x2 ≡ 1 (mod p). Recall that by the term “solution” of a linear congru-

ence we mean a least residue modulo p as defined in Section 5. Linear Congruences.

We use the term “solution” is the same sense in this quadratic congruence.

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-5.pdf
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Lemma 6.2. The congruence x2 ≡ 1 (mod p), where p is an odd prime, has two

solutions: 1 and p− 1.

Note. The next result concerns the multiplicative inverses modulo prime p. Notice

that the result refers to the solution of the linear congruence ax ≡ 1 (mod p); this

linear congruence has a unique solution by Lemma 5.2.

Lemma 6.3. Let p be an odd prime and let a′ be the solution of ax ≡ 1 (mod p)

where a ∈ {1, 2, . . . , p − 1}. Then a′ ≡ b′ (mod p) if and only if a ≡ b (mod p).

Furthermore, a ≡ a′ (mod p) if and only if a = 1 or a = p− 1.

Note 6.A. We know that the multiplicative inverse of a = 1 is a′ = 1, and the

multiplicative inverse of a = p−1 is a′ = p−1. Now consider a, b ∈ {2, 3, . . . , p−2}

where a 6= b. Then a 6≡ b (mod p) and so by Lemma 6.3 we have that the respective

inverses a′ and b′ satisfy a′ 6≡ b′ (mod p). Now we know that the linear congruence

ax ≡ 1 (mod p) has a unique solution by Lemma 5.2, so that every 2, 3, . . . , p−2 has

a multiplicative inverse and by Lemma 6.3 the inverse is also one of 2, 3, . . . , p− 2.

Since the only elements of Zp which are their own inverse are 1 and p− 1, then the

elements of 2, 3, . . . , p− 2 can be paired up into (p− 3)/2 pairs of the form (a, a′).

Note. We are now equipped to prove Wilson’s Theorem (Theorem 6.2).
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