Section 9. Euler's Theorem and Function

Note. In Section 6. Fermat's and Wilson's Theorems we saw:
Theorem 6.1. Fermat's Theorem. If p is prime and the greatest common divisor $(a, p)=1$, then $a^{p-1} \equiv 1(\bmod p)$.

In this section we explore what happens when we try to extend the result from primes p to nonprimes m.

Note. We consider the question: Given any integer m, is there a number $f(m)$ such that $a^{f(m)} \equiv 1(\bmod m)$? Notice that if $(a, m)=d>1$ then $d \mid a^{k}$ for any integer $k>0$, so that $d \nmid\left(a^{k}-1\right)$ and hence $m \nmid\left(a^{k}-1\right)$. So if we want to generalize Fermat's Theorem to composite numbers m, we will still need to keep the greatest common divisor condition $(a, m)=1$.

Example 6.A. Notice that with $m=9$, each of $1,2,4,5,7,8$ are relatively prime to $m=9$, and we have:

$a(\bmod 9)$	$a^{2}(\bmod 9)$	$a^{3}(\bmod 9)$	$a^{4}(\bmod 9)$	$a^{5}(\bmod 9)$	$a^{6}(\bmod 9)$
1	1	1	1	1	1
2	4	8	7	5	1
4	7	1	4	7	1
5	7	8	4	2	1
7	4	1	7	4	1
8	1	8	1	8	1

So it seems that the desired value of $f(9)$ is 6 .

Note. Notice that there are 6 positive integers less than 9 which are relatively prime to 9 . Dudley shows that this pattern also holds with $m=6$ and $m=10$ (where $f(6)=2$ and $f(10)=4$), and the pattern is to be established for $m=14$ in Exercise 9.1 (where $f(14)=6$). So enumerating the number of positive integers less than m which are relatively prime to m seems to be a useful thing. This inspires the following definition.

Definition. If m is a positive integer, then denote the number of positive integers less than or equal to m and relatively prime to m as $\varphi(m)$. We call $\varphi(m)$ Euler's φ-function.

Note. Notice that $\varphi(6)=2, \varphi(9)=6, \varphi(10)=4$, and $\varphi(14)=6$. In fact, the suspected pattern holds as is shown in the next theorem.

Theorem 9.1. Euler's Theorem. Suppose that $m \geq 1$ and $(a, m)=1$. Then $a^{\varphi(m)} \equiv 1(\bmod m)$.

Note 9.A. If $m=p$ is prime, then $\varphi(m)=p-1$ so that Theorem 9.1 reduces to Fermat's Theorem (Theorem 6.1) when m is prime. We will prove Theorem 9.1 below. The key idea in the proof is that for prime p if $(a, p)=1$ then the least residues $(\bmod p)$ of $a, 2 a, 3 a, \ldots,(p-1) a$ are a permutation of $1,2,3, \ldots, p-1$, as shown in the following lemma.

Lemma 9.1. If $(a, m)=1$ and $r_{1}, r_{2}, \ldots, r_{\varphi(m)}$ are the positive integers less than m and relatively prime to m, then the least residues $(\bmod m)$ of $a r_{1}, a r_{2}, a r_{3}, \ldots, a r_{\varphi(m)}$ are a permutation of $r_{1}, r_{2}, r_{3}, \ldots, r_{\varphi(m)}$.

Note. We are now equipped to prove Theorem 9.1; the proof is similar to that of Fermat's Theorem.

Note. We now turn our attention to properties of Euler's φ-function. In particular, we will present a method for calculating $\varphi(n)$ based on the prime-power decomposition of n. A first step in this direction is the following.

Lemma 9.2. For prime $p, \varphi\left(p^{n}\right)=p^{n-1}(p-1)$ for all positive integers n.

Lemma 9.3. If $(a, m)=1$ and $a \equiv b(\bmod m)$, then $(b, m)=1$.

Corollary 9.A. If the least residues modulo m of $r_{1}, r_{2}, \ldots, r_{m}$ are a permutation of $0,1, \ldots, m-1$, then the list $r_{1}, r_{2}, \ldots, r_{m}$ contains exactly $\varphi(m)$ elements relatively prime to m.

Note. Recall from Section 7. The Divisors of an Integer that a function defined on the positive integers is multiplicative if and only if $(m, n)=1$ implies $f(m n)=f(m) f(n)$. We next show that Euler's φ-function is multiplicative so that we can extend Lemma 9.2 to all positive integers using the Unique Factorization Theorem/Fundamental Theorem of Arithmetic (Theorem 2.2).

Theorem 9.2. Euler's φ-function is multiplicative.

Exercise 9.8. Calculate $\varphi(74), \varphi(76)$, and $\varphi(78)$.
Solution. We have $\varphi(74)=\varphi(2 \cdot 37)=\varphi(2) \varphi(37)=(1)(36)=36, \varphi(76)=$ $\varphi\left(2^{2} \cdot 19\right)=\varphi\left(2^{2}\right) \varphi(19)=(2)(18)=36$, and $\varphi(78)=\varphi(2 \cdot 39)=\varphi(2) \varphi(39)=$ $(1)(38)=38$.

Note. We can now use Lemma 9.2 and Theorem 9.2 to find $\varphi(n)$ for all positive n.

Theorem 9.3. If n has a prime-power decomposition given by $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$, then $\varphi(n)=p_{1}^{e_{1}-1}\left(p_{1}-1\right) p_{2}^{e_{2}-1}\left(p_{2}-1\right) \cdots p_{k}^{e_{k}-1}\left(p_{k}-1\right)$.

Note. The proof of the following is straightforward and "left to the reader."

Corollary. If $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$, then $\varphi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right)$.
Exercise 9.9(a). Calculate $\sum_{d \mid n} \varphi(d)$ for $n=12,13,14,15$, and 16.
Solution. With $n=12$, the divisors are $1,2,3,4,6$, and 12 . We have $\varphi(1)=1$, $\varphi(2)=1, \varphi(3)=2, \varphi(4)=2, \varphi(6)=2$, and $\varphi(12)=4$, so that
$\sum_{d \mid 12} \varphi(d)=\varphi(1)+\varphi(2)+\varphi(3)+\varphi(4)+\varphi(6)+\varphi(12)=1+1+2+2+2+4=12$.

With $n=13$, the divisors are 1 and 13 . We have $\varphi(1)=1$ and $\varphi(13)=12$, so that

$$
\sum_{d \mid 13} \varphi(d)=\varphi(1)+\varphi(13)=1+12=13
$$

With $n=14$, the divisors are $1,2,7$, and 14 . We have $\varphi(1)=1, \varphi(2)=1$, $\varphi(7)=6$, and $\varphi(14)=6$, so that

$$
\sum_{d \mid 14} \varphi(d)=\varphi(1)+\varphi(2)+\varphi(7)+\varphi(14)=1+1+6+6=14 .
$$

With $n=15$, the divisors are $1,3,5$, and 15 . We have $\varphi(1)=1, \varphi(3)=2$, $\varphi(5)=4$, and $\varphi(15)=8$, so that

$$
\sum_{d \mid 15} \varphi(d)=\varphi(1)+\varphi(3)+\varphi(5)=1+2+4+8=15
$$

With $n=16$, the divisors are $1,2,4,8$, and 16 . We have $\varphi(1)=1, \varphi(2)=1$, $\varphi(4)=2, \varphi(8)=4$, and $\varphi(16)=8$, so that

$$
\sum_{d \mid 16} \varphi(d)=\varphi(1)+\varphi(2)+\varphi(4)+\varphi(8)+\varphi(16)=1+1+2+4+8=16 .
$$

With these results, the next theorem (which will be useful in the next section) is not surprising.

Theorem 9.4. If $n \geq 1$, then $\sum_{d \mid n} \varphi(d)=n$.

