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Section 9. Euler’s Theorem and Function

Note. In Section 6. Fermat’s and Wilson’s Theorems we saw:

Theorem 6.1. Fermat’s Theorem. If p is prime and the greatest common

divisor (a, p) = 1, then ap−1 ≡ 1 (mod p).

In this section we explore what happens when we try to extend the result from

primes p to nonprimes m.

Note. We consider the question: Given any integer m, is there a number f(m)

such that af(m) ≡ 1 (mod m)? Notice that if (a, m) = d > 1 then d | ak for any

integer k > 0, so that d - (ak−1) and hence m - (ak−1). So if we want to generalize

Fermat’s Theorem to composite numbers m, we will still need to keep the greatest

common divisor condition (a, m) = 1.

Example 6.A. Notice that with m = 9, each of 1, 2, 4, 5, 7, 8 are relatively prime

to m = 9, and we have:

a (mod 9) a2 (mod 9) a3 (mod 9) a4 (mod 9) a5 (mod 9) a6 (mod 9)

1 1 1 1 1 1

2 4 8 7 5 1

4 7 1 4 7 1

5 7 8 4 2 1

7 4 1 7 4 1

8 1 8 1 8 1

So it seems that the desired value of f(9) is 6.

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-6.pdf
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Note. Notice that there are 6 positive integers less than 9 which are relatively

prime to 9. Dudley shows that this pattern also holds with m = 6 and m = 10

(where f(6) = 2 and f(10) = 4), and the pattern is to be established for m = 14 in

Exercise 9.1 (where f(14) = 6). So enumerating the number of positive integers less

than m which are relatively prime to m seems to be a useful thing. This inspires

the following definition.

Definition. If m is a positive integer, then denote the number of positive integers

less than or equal to m and relatively prime to m as ϕ(m). We call ϕ(m) Euler’s

ϕ-function.

Note. Notice that ϕ(6) = 2, ϕ(9) = 6, ϕ(10) = 4, and ϕ(14) = 6. In fact, the

suspected pattern holds as is shown in the next theorem.

Theorem 9.1. Euler’s Theorem. Suppose that m ≥ 1 and (a, m) = 1. Then

aϕ(m) ≡ 1 (mod m).

Note 9.A. If m = p is prime, then ϕ(m) = p − 1 so that Theorem 9.1 reduces

to Fermat’s Theorem (Theorem 6.1) when m is prime. We will prove Theorem 9.1

below. The key idea in the proof is that for prime p if (a, p) = 1 then the least

residues (mod p) of a, 2a, 3a, . . . , (p− 1)a are a permutation of 1, 2, 3, . . . , p− 1, as

shown in the following lemma.
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Lemma 9.1. If (a, m) = 1 and r1, r2, . . . , rϕ(m) are the positive integers less than m

and relatively prime to m, then the least residues (mod m) of ar1, ar2, ar3, . . . , arϕ(m)

are a permutation of r1, r2, r3, . . . , rϕ(m).

Note. We are now equipped to prove Theorem 9.1; the proof is similar to that of

Fermat’s Theorem.

Note. We now turn our attention to properties of Euler’s ϕ-function. In par-

ticular, we will present a method for calculating ϕ(n) based on the prime-power

decomposition of n. A first step in this direction is the following.

Lemma 9.2. For prime p, ϕ(pn) = pn−1(p− 1) for all positive integers n.

Lemma 9.3. If (a, m) = 1 and a ≡ b (mod m), then (b, m) = 1.

Corollary 9.A. If the least residues modulo m of r1, r2, . . . , rm are a permutation of

0, 1, . . . ,m−1, then the list r1, r2, . . . , rm contains exactly ϕ(m) elements relatively

prime to m.

Note. Recall from Section 7. The Divisors of an Integer that a function de-

fined on the positive integers is multiplicative if and only if (m, n) = 1 implies

f(mn) = f(m)f(n). We next show that Euler’s ϕ-function is multiplicative so that

we can extend Lemma 9.2 to all positive integers using the Unique Factorization

Theorem/Fundamental Theorem of Arithmetic (Theorem 2.2).

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-9.pdf
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Theorem 9.2. Euler’s ϕ-function is multiplicative.

Exercise 9.8. Calculate ϕ(74), ϕ(76), and ϕ(78).

Solution. We have ϕ(74) = ϕ(2 · 37) = ϕ(2)ϕ(37) = (1)(36) = 36, ϕ(76) =

ϕ(22 · 19) = ϕ(22)ϕ(19) = (2)(18) = 36, and ϕ(78) = ϕ(2 · 39) = ϕ(2)ϕ(39) =

(1)(38) = 38. �

Note. We can now use Lemma 9.2 and Theorem 9.2 to find ϕ(n) for all positive

n.

Theorem 9.3. If n has a prime-power decomposition given by n = pe1
1 pe2

2 · · · pek

k ,

then ϕ(n) = pe1−1
1 (p1 − 1)pe2−1

2 (p2 − 1) · · · pek−1
k (pk − 1).

Note. The proof of the following is straightforward and “left to the reader.”

Corollary. If n = pe1
1 pe2

2 · · · pek

k , then ϕ(n) = n

(
1− 1

p1

) (
1− 1

p2

)
· · ·

(
1− 1

pk

)
.

Exercise 9.9(a). Calculate
∑
d |n

ϕ(d) for n = 12, 13, 14, 15, and 16.

Solution. With n = 12, the divisors are 1, 2, 3, 4, 6, and 12. We have ϕ(1) = 1,

ϕ(2) = 1, ϕ(3) = 2, ϕ(4) = 2, ϕ(6) = 2, and ϕ(12) = 4, so that∑
d | 12

ϕ(d) = ϕ(1) + ϕ(2) + ϕ(3) + ϕ(4) + ϕ(6) + ϕ(12) = 1 + 1 + 2 + 2 + 2 + 4 = 12.
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With n = 13, the divisors are 1 and 13. We have ϕ(1) = 1 and ϕ(13) = 12, so that∑
d | 13

ϕ(d) = ϕ(1) + ϕ(13) = 1 + 12 = 13.

With n = 14, the divisors are 1, 2, 7, and 14. We have ϕ(1) = 1, ϕ(2) = 1,

ϕ(7) = 6, and ϕ(14) = 6, so that∑
d | 14

ϕ(d) = ϕ(1) + ϕ(2) + ϕ(7) + ϕ(14) = 1 + 1 + 6 + 6 = 14.

With n = 15, the divisors are 1, 3, 5, and 15. We have ϕ(1) = 1, ϕ(3) = 2,

ϕ(5) = 4, and ϕ(15) = 8, so that∑
d | 15

ϕ(d) = ϕ(1) + ϕ(3) + ϕ(5) = 1 + 2 + 4 + 8 = 15.

With n = 16, the divisors are 1, 2, 4, 8, and 16. We have ϕ(1) = 1, ϕ(2) = 1,

ϕ(4) = 2, ϕ(8) = 4, and ϕ(16) = 8, so that∑
d | 16

ϕ(d) = ϕ(1) + ϕ(2) + ϕ(4) + ϕ(8) + ϕ(16) = 1 + 1 + 2 + 4 + 8 = 16.

With these results, the next theorem (which will be useful in the next section) is

not surprising. �

Theorem 9.4. If n ≥ 1, then
∑
d |n

ϕ(d) = n.
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