
Supplement. The Prime Number Theorem—History 1

Supplement. The Prime Number

Theorem—History

Note. In this supplement, we give a survey of the history of the Prime Num-

ber Theorem (“PNT”). Our main reference is John Derbyshire’s Prime Obsession:

Bernhard Riemann and the Greatest Unsolved Problem in Mathematics, Washing-

ton, DC: Joseph Henry Press (2003). As the title suggests, this book addresses the

Riemann Hypothesis concerning the zeros of the Riemann zeta function, but the

first part of the book is on the Prime Number Theorem.

The Prime Number Theorem concerns an asymptotic approximation of the number

of primes less than a given integer. We start with reviewing some results concern-

ing prime numbers from Elementary Number Theory (MATH 3120) which are of

historical interest.

https://faculty.etsu.edu/gardnerr/3120/Number-Theory-notes.htm
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Note. In these notes, we restrict our attention to positive integers. Recall that

an integer that is greater than 1 and has no positive integer divisors other that

1 and itself if a prime number and an integer greater than 1 that is not prime is

a composite number. Some preliminary results on prime numbers are (1) every

integer greater than 1 is divisible by a prime, and (2) every integer greater than 1

can be written as a product of primes (see my online notes for Elementary Number

Theory on Section 2. Unique Factorization; notice Lemmas 2.1 and 2.2). The first

historically significant result concerning primes numbers is Euclid’s proof that there

are infinitely many primes (for a proof, see Theorem 2.1 of the Elementary Number

Theory notes just referenced). This appears in Euclid’s Elements of Geometry as

Proposition 20 in Book IX, where it is stated as “Prime numbers are more than any

assigned multitude of prime numbers.” Euclid’s proof is online in David Joyce’s

online version of Euclid’s Elements (accessed 3/30/2022). For a brief discussion of

the number theory contained in Euclid’s Elements, see my online notes for Intro-

duction to Modern Geometry (MATH 4157/5157) on Section 2.4. Books VII and

IX. Number Theory.

Note. A technique for finding prime numbers is the Seive of Eratosthenes, named

for Eratosthenes of Cyrene (275 bce–194 bce). This technique involves eliminating

composite numbers from a list of positive integers greater than 1 by first eliminating

multiples of 2 greater than 2, then eliminating multiples of 3 greater than 3, then

eliminating multiples of 5 greater than 5, etc. If all multiples of primes less than or

equal to n have been removed, then all numbers less than n2 which remain must be

prime. Wikipedia has a nice animated GIF of the Sieve of Eratosthenes which finds

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-2.pdf
https://mathcs.clarku.edu/~djoyce/java/elements/bookIX/propIX20.html
https://mathcs.clarku.edu/~djoyce/java/elements/bookIX/propIX20.html
https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-2-4.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-2-4.pdf
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes#/media/File:Sieve_of_Eratosthenes_animation.gif
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all prime numbers between 2 and 120 by eliminating multiples of 2, 3, 5, 7, and

11 (accessed 3/30/2022). Some additional historical information on Eratosthenes

is in my online notes Section 2. Unique Factorization.

Images of Euclid (circa 325 bce–circa 265 bce) from World History Encyclopedia

and Eratosthenes (276 bce–194 bce) from MacTutor History of Mathematics

Archive (accessed 3/30/2022).

Note. An extremely important result is the fact that every (positive) integer

is “made up” of prime numbers. That is, every (positive) integer is a product of

powers of prime numbers and this representation is unique. This is the Fundamental

Theorem of Arithmetic (also sometimes called the Unique Factorization Theorem).

In Elementary Number Theory (MATH 3120) it is stated as (see Theorem 2.2 in

the aforementioned Section 2. Unique Factorization:

The Unique Factorization Theorem or The Fundamental The-

orem of Arithmetic.

Any positive integer greater than 1 can be written as a product of

primes in one and only one way.

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-2.pdf
https://www.worldhistory.org/Euclid/
https://mathshistory.st-andrews.ac.uk/Biographies/Eratosthenes/
https://mathshistory.st-andrews.ac.uk/Biographies/Eratosthenes/
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-2.pdf
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The fact that every positive integer greater than 1 is a product of primes is in

Euclid’s Elements as Proposition 14 of Book IX, where it is stated as: “If a number

be the least that is measured by prime numbers, it will not be measured by any

other prime number except those originally measuring it.” In modern terminology,

this would be read: “a least common multiple of several prime numbers is not

a multiple of any other prime number.” However, this only partially addresses

the uniqueness of the representation (see the Wikipedia page on the Fundamental

Theorem of Arithmetic; accessed 3/30/2022).

Note. Recall that a positive integer is perfect is it is twice the sum of its (positive)

divisors; see my online Elementary Number Theory notes on Section 8. Perfect

Numbers. Another result in the Elements is Proposition 36 of Book IX which states

(in modern terminology): “If for some k > 1 we have 2k−1 prime, then 2k−1(2k−1)

is a perfect number.” A proof is given in the online notes just mentioned. In fact,

it is for 2k − 1 to be prime it is necessary that k itself is prime (see my online

notes for Mathematical Reasoning [MATH 3000] on Section 6.9. Perfect Numbers,

Mersenne Primes, Arithmetic Functions; see Exercise 6.93). Islamic mathematician

Ibn al-Haytham (9651039) gave a partial converse of Euclids Proposition IX.36 in

his Treatise on Analysis and Synthesis. Moving significantly forward in time, Pierre

de Fermat (August 17, 1601–January 12, 1665) wrote a letter to to French monk

and math enthusiast Marin Mersenne (September 8, 1588September 1, 1648) in

1640 concerning perfect numbers. Fermats letter inspired Mersenne to further

explore prime numbers and perfect numbers. Mersenne published Cogitata Physica

Mathematica in 1644 in which he claimed 2p−1 is prime for several values of prime

https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic
https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-8.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-8.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-9.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-9.pdf
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p; these prime numbers then yield perfect numbers 2p−1(2p − 1) by Euclid IX.36.

Primes of the form 2p − 1 are now known as Mersenne primes. Some conjectures

on Mersenne primes are listed in Section 8. Perfect Numbers. In two manuscripts

that Leonhard Euler wrote but did not publish, he proved the converse of Euclid’s

Proposition IX.39. That is, he proved that every even perfect number is of the form

2p−1(2p−1) where p is prime and 2p−1 is a Mersenne prime (this is given as Theorem

8.2 in Section 8. Perfect Numbers). This history is base on the MacTutor History

of Mathematics Archive’s page on “Perfect Numbers” (accessed 3/30/2022).

Images of Pierre de Fermat (August 17, 1601-January 12, 1665) from Fermat’s

Library website and Marin Mersenne (September 8, 1588–September 1, 1648)

from MacTutor History of Mathematics Archive (accessed 3/30/2022).

Note. We mention two more results on prime numbers, before focusing on the

Prime Number Theorem. We are interested in finding specific primes or finding

prime-containing intervals of real numbers. In 1837 Peter Lejeune Dirichlet (Febru-

ary 13, 1805-May 5, 1859) proved:

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-8.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-8.pdf
https://mathshistory.st-andrews.ac.uk/HistTopics/Perfect_numbers/
https://mathshistory.st-andrews.ac.uk/HistTopics/Perfect_numbers/
https://fermatslibrary.com/
https://fermatslibrary.com/
https://mathshistory.st-andrews.ac.uk/Biographies/Mersenne/


Supplement. The Prime Number Theorem—History 6

Dirichlet’s Theorem. For positive integers a and b, where (a, b) = 1,

there are infinitely many primes of the form an+b, where n is a positive

integer. That is, there are infinitely many primes that are congruent

to b modulo a.
Dirichlet’s Theorem is stated as Theorem 22.B in Section 22. Formulas for Primes.

A result concerning locations of primes was conjectured in 1845 by Joseph Bertrand

(March 11, 1822-April 5, 1900) and verified up to three million. It was proved by

Pafnuty Chebyshev (May 16, 1821-December 8, 1894). The result is:

Bertrand’s Postulate/Bertrand’s Theorem/Bertrand-Cheby-

shev Theorem/Chebyshev’s Theorem.

For all integers n ≥ 2, there is a prime p such that n < p < 2n.

Bertrand’s Postulate is stated as Theorem 22.2 in Section 22. Formulas for Primes,

where a proof is given.

Note. Leonhard Euler (April 15, 1707–September 18, 1783) in 1737 published his

Variae observationes circa series infinitas (“Various Observations about Infinite

Series”) in which he introduced analysis techniques into the study of number theory

for the first time. He defined a function (later called the zeta function by Riemann),

that yields the sum of a p-series when p > 1:

ζ(s) =
∞∑

n=1

1

ns
= 1 +

1

2s
+

1

3s
+

1

4s
+ · · · where s > 1.

He establishes the relationship that

ζ(s) =
∞∑

n=1

1

ns
=

(
1

1− 2−s

) (
1

1− 3−s

) (
1

1− 5−s

) (
1

1− 7−s

) (
1

1− 11−s

)
· · ·

=
∏

p prime

1

1− p−s
for s > 1.

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-22.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-22.pdf
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(see Wikipedia’s Proof of the Euler Product Formula for the Riemann Zeta Func-

tion; accessed 3/31/2022). Taking a limit as s→ 1+ allows us to conclude (as did

Euclid) that there are an infinite number of primes since this limit yields (with some

due apologies for the informal analysis)
∞∑

n=1

1

n
=

∏
p prime

1

1− p
, and we know that the

harmonic series
∑∞

n=1
1
n diverges, so we know that the product must diverge and

hence must be a product over an infinite number of primes p. In addition, Euler

solved the “Basel Problem” in 1735 by showing
∞∑

n=1

1

n2 =
π2

6
, which he published

in his 1740 De summis serierum reciprocarum. In fact, he found values for all even

s. You can view this original work online (in Latin) at the Euler Archive on De

summis serierum reciprocarum (accessed 3/31/2022). A nice reference on Euler’s

results along these lines is Raymond Ayoub’s “Euler and the Zeta Function,” The

American Mathematical Monthly, 81, 1067–86 (December 1974); this can be found

online on the MAA website (accessed 3/31/2022). A more general lecture on Euler

is my 2007 online Leonard Euler—Happy 300th Birthday! presentation.

Image from the MacTutor History of Mathematics Archive page on Euler

https://en.wikipedia.org/wiki/Proof_of_the_Euler_product_formula_for_the_Riemann_zeta_function
https://en.wikipedia.org/wiki/Proof_of_the_Euler_product_formula_for_the_Riemann_zeta_function
https://scholarlycommons.pacific.edu/euler-works/41/
https://scholarlycommons.pacific.edu/euler-works/41/
https://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/RaymondAyoub.pdf
https://faculty.etsu.edu/gardnerr/euler/euler.html
https://mathshistory.st-andrews.ac.uk/Biographies/Euler/
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Note. The function π(x) is defined as the number of primes less than or equal to

x; see my online notes for Elementary Number Theory (MATH 3120) on Section

21. Bounds for π(x). It is sometimes called the prime counting function (see Der-

byshire’s Prime Obsession, page 38). The Prime Number Theorem claims that for

large values of x, π(x) is approximately x/ lnx. More precisely:

The Prime Number Theorem.

lim
x→∞

π(x)

x/ log x
= 1.

You may also see this written as π(x) ∼ x/ log x. A graph of π(x) alongside a

graph if x/ log x is in the following image from an MAA website on “The Origin

of the Prime Number Theorem: A Primary Source Project for Number Theory

Students”:

The image includes some other functions we will discuss. The first published re-

sult on a Prime Number Theorem type of result is due to Adrien-Marie Legendre

(September 18, 1752–January 9, 1833). In his Essai sur la Théorie des Nombres [Es-

say on the Theory of Numbers] (1797–98), he conjectured that π(x) ∼ x

A log x+B
for some numbers A and B, “to be determined.” He came to this idea by consider-

ing tables of prime numbers (some by Juri Vega, whose data is given on the MAA

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-21.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-21.pdf
https://www.maa.org/press/periodicals/convergence/the-origin-of-the-prime-number-theorem-a-primary-source-project-for-number-theory-students
https://www.maa.org/press/periodicals/convergence/the-origin-of-the-prime-number-theorem-a-primary-source-project-for-number-theory-students
https://www.maa.org/press/periodicals/convergence/the-origin-of-the-prime-number-theorem-a-primary-source-project-for-number-theory-students
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website mentioned above). In the second edition of his book (1808), he refined his

estimate to π(x) ∼ x

log x− 1.08366
(notice that this function is also graphed in the

image above).

An 1820 watercolor caricature of Legendre from the MacTutor History of

Mathematics Archive page on Legendre; this is the only image of him.

Note. Though Legendre was the first to publish, it seems that Carl Friedrich

Gauss (April 30, 1777–February 23, 1855) was the first to consider the question

of the asymptotic behavior of π(x). In 1792–93, he considered extensive tables of

prime numbers (he spent some of his spare time creating such tables)and came

to the conclusion that the density with which primes occur in a neighborhood of

integer n is 1/ log n, so that the number of primes in the interval [a, b] is approxi-

mately

∫ b

a

dx

log x
(see page 602 of J. L. Goldstein’s “A History of the Prime Number

Theorem,” The American Mathematical Monthly, 80(6), 599–615 (1973); this pa-

per is available through JSTOR (accessed 3/31/2022). Gauss approximation for

https://mathshistory.st-andrews.ac.uk/Biographies/Legendre/
https://mathshistory.st-andrews.ac.uk/Biographies/Legendre/
https://www.jstor.org/stable/2319162
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π(x) is then

∫ x

2

dt

log t
; this is called the logarithmic integral function and is denoted

Li(x) (or sometimes li(x), as in the graph above). However, Gauss never publishes

his results. The main source of material on his contributions are in a letter of

December 24, 1849 which he wrote the the astronomer Johann Franz Encke (after

whom a well-known short-term comet is named). In the letter, he explains his use

of tables of primes (including the tables of Vega’s mentioned above) and his ap-

proximation of π(x) with the logarithmic integral Li(x). A translation of the letter

is given in a appendix to Goldstein’s “A History of the Prime Number Theorem.”

It was not unusual for Gauss to make claims such as this (for example, he claimed

to know about hyperbolic geometry sometime between about 1790 and 1815 but

said nothing about it until it was independently explained by Lobatschewsky and

Bolyai around 1830; see my online presentation on Hyperbolic Geometry).

Image from the MacTutor History of Mathematics Archive page on Gauss

https://faculty.etsu.edu/gardnerr/noneuclidean/hyperbolic.pdf
https://mathshistory.st-andrews.ac.uk/Biographies/Gauss/
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Note. We return to a discussion of Dirichlet’s Theorem (Theorem 22.B of Section

22. Formulas for Primes). It is stated above in terms of there being infinitely many

primes of the form an + b, where n is a positive integer and a and b are relatively

prime. It is also common to describe it in terms of the arithmetic progression

b, b+ a, b+ 2a, b+ 3a, . . ., for which Dirichlet’s Theorem implies the sequence con-

tains infinitely many primes. Inspired by earlier work of Euler (who we have already

credited with introducing analytic techniques to the study of number theory, but

Euler’s arguments sometimes lacked rigor by modern standards), Dirichlet applied

the analytic idea of L-series (which he also introduced). His result is described

on Wikipedia’s webpage on “Dirichlet’s Theorem on Arithmetic Progressions” as:

“The theorem represents the beginning of rigorous analytic number theory.” A

proof can be found in my online notes (in preparation) on Theory of Numbers

(MATH 5070); see Theorem 10.5 of Chapter 10. Primes in an Arithmetic Progres-

sion.

Johann Lejeune Dirichlet (February 13, 1805–May 5, 1859)

Image from the MacTutor History of Mathematics Archive page on Dirichlet

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-22.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-22.pdf
https://en.wikipedia.org/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions
https://faculty.etsu.edu/gardnerr/5070/Number-Theory-notes-Everest-Ward.htm
https://faculty.etsu.edu/gardnerr/5070/Number-Theory-notes-Everest-Ward.htm
https://mathshistory.st-andrews.ac.uk/Biographies/Dirichlet/
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Note. The next steps leading to the proof of the Prime Number Theorem are

contained in two memoirs by Pafnuty Chebyshev (May 16, 1821–December 8, 1894)

which were published in 1851 and 1852. Chebyshev defined the functions

θ(x) =
∑
p≤x

log p and ψ(x) =
∑
pm≤x

log p,

where p runs over primes and m over positive integers. Chebyshev proved that the

Prime Number Theorem is equivalent to either of the following two limits:

lim
x→∞

θ(x)

x
= 1 and lim

x→∞

ψ(x)

x
= 1,

and that if limx→∞ θ(x)/x exists then its value is 1. We mentioned Chebyshev’s

bound on
π(x)

x/ log x
in Section 21. Bounds for π(x). Specifically, he proved

0.92129 ≤ lim infx→∞
π(x)

x/ log x
≤ 1 ≤ lim supx→∞

π(x)

x/ log x
≤ 1.10555.

Image from the MacTutor History of Mathematics Archive page on Chebyshev

Chebyshev’s results were insufficient to prove the Prime Number Theorem. His

results were reprinted in 1899 in “Sur la fonction qui détermine la totalité de

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-21.pdf
https://mathshistory.st-andrews.ac.uk/Biographies/Chebyshev/
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nombres premiers inférieurs à une limite don’ee,” Oeuvres, 1, 27–48 (1899), and

“Memoire sur les nombres premiers,” Oeuvres, 1, 49–70 (1899); see page 606 of J.

L. Goldstein’s “A History of the Prime Number Theorem,” mentioned above.

Note. Bernhard Riemann (September 17, 1826–July 20, 1866) in a 9-page arti-

cle “On the Number of Primes Less Than a Given Magnitude” (published in the

November 1859 issue of Monatsberichte der Königlich Preußischen Akademie der

Wissenschaften zu Berlin) formally introduced the zeta function and set the stage

for the proof of the Prime Number Theorem (and laid the foundations of research

that continues today). A translation appears in the appendix of Harold Edwards’

Riemann’s Zeta Function, Academic Press 1974 (reprinted by Dover Publications in

2001), and a translation is online on the Claymath.org website (accessed 3/6/2022).

Riemann’s definition of ζ(s) for Re(z) > 1 is the same as Euler’s for s > 1:

ζ(s) =
∞∑

n=1

1

ns
=

∏
p prime

1

1− p−s
for Re(s) > 1.

Riemann extended ζ(s) to the rest complex plane, except s = 1. The zeta function

is the meromorphic on C with a simple pole at s = 1 only. This is established in

Complex Analysis 2 (MATH 5520) in VII.8. The Riemann Zeta Function (though

the class traditionally does not reach this point). Riemann’s zeta function has

“trivial zeros” consisting of each negative even integer, −2,−4,−6, . . .. Any other

zeros of ζ(s) are called “nontrivial zeros.” If the nontrivial zeros are located in real

part less than one, then the Prime Number Theorem will follow; see page 156 of

John Derbyshire’s Prime Obsession: Bernhard Riemann and the Greatest Unsolved

Problem in Mathematics, Washington, DC: Joseph Henry Press (2003). Riemann

did not show that the nontrivial zeros have real part less than one, and so he

http://www.claymath.org/sites/default/files/ezeta.pdf
https://faculty.etsu.edu/gardnerr/5510/notes/VII-8.pdf
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was unable to prove the Prime Number Theorem. As discussed below, the Prime

Number Theorem was proved in 1896, in fact, by showing the nontrivial zeros of the

zeta function have real part less than one. But knowing that π(x) ∼ x/ log x leads

to the next question of “How good is the approximation?,” or equivalently “How

bad is the error term when we approximate π(x) by x/ log x?” “Riemann’s 1859

paper gave an exact expression for the error term. That expression. . . involves all

the non-trivial zeros of the zeta function, so the key to understanding the error term

is hidden in among the zeros somehow.” This quote is from page 234 of Derbyshire.

So even though the Prime Number Theorem has been proved (as we consider next),

it is still of interest to locate the nontrivial zeros of ζ(s). Riemann speculates in

his 1859 paper that the nontrivial zeros all have real part equal to 1/2 (and so lie

on vertical line Re(z) = 1/2 in the complex plane). This is known as the Riemann

Hypothesis and is probably the most famous unsolved mathematical conjecture

today. If Riemann’s Hypothesis is true, then the error term is of size x1/2 log x and

this gives “the perfect balance of the zeros, and of the prime” (according to Brian

Conrey’s survey Riemann’s Hypothesis; accessed 4/6/2022).

Image from the MacTutor History of Mathematics Archive page on Riemann

https://aimath.org/~kaur/publications/90.pdf
https://mathshistory.st-andrews.ac.uk/Biographies/Riemann/
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Note. Jacques Hadamard (December 8, 1865–October 17, 1863) developed in

1893 a theory of (complex) entire functions of finite order. Hans von Mangoldt

(May 18, 1854–October 27, 1925) in “Auszug aus einer Arbeit unter dem Titel:

Zu Riemann’s Abhandlung uber die Anzahl der Primzahlen unter einer gegebenen

Grösse,” [Excerpt from a Work Entitled: On Riemann’s Treatise on the Number of

Prime Numbers below a Given Size] Sitz Konig. Preus. Akad. Wiss. zu Berlin, 337–

350, 883–895 (1894) gave rigorous proofs of two claims made in Riemann’s 1859

paper using Hadamard’s results. Working independently, Hadamard and Charles-

Jean de la Vallée Poussin (August 14, 1866–March 2, 1962) showed that ζ(s) has

no zeros on Re(z) = 1, from which the Prime Number Theorem follows. Some of

this history is from Tom Apostol’s “A Centennial History of the Prime Number

Theorem,” available on the CalTech website (accessed 4/6/2022). The references

for Hadamard and Poussin’s work are:

1. Jacques Hadamard, “Sur la distribution des zeros de la fonction ζ(s) et ses

consequences arithmetiques,” Bull. Soc. Math. de France, 24, 199–220 (1896).

2. Charles de la Vallée Poussin, “Recherches analytiques sur la theorie des nom-

bres premiers. Premiere partie. La fonction ζ(s) de Riemann et les nombres

premiers en general” [Analytical Research on the Theory of Prime Numbers.

First Part. The Riemann Function ζ(s) and Prime Numbers in General], Ann.

Soc. Sci. Bruxelles, 20, 183–256 (1896).

These proofs heavily depend on the theory of functions of a complex variable and

this work falls under the category of analytic number theory.

https://calteches.library.caltech.edu/3832/1/Apostol.pdf
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Jacques Hadamard Charles de la Vallée Poussin

Images from the MacTutor History of Mathematics Archive biographies on

Hadamard and Poussin

Note. We mention one more analytic proof of the Prime Number Theorem. In

1980, Donald J. Newman (July 27, 1930–March 28, 2007) gave a (relatively) simple

proof of the Prime Number Theorem which uses the standard results from com-

plex analysis of Cauchy’s Integral Formula and Cauchy’s Integral Theorem; for

statements and proofs of these, see my online notes for Complex Variables (MATH

4337/5337) on Section 4.46. Cauchy-Goursat Theorem (Theorem 4.46.A is a state-

ment of Cuachy’s Theorem) and Section 4.50. Cauchy Integral Formula, or my

motes for Complex Analysis 1 [MATH 5510] on Section IV.5. Cauchy’s Theorem

and Integral Formula. Newman’s paper is “Simple Analytic Proof of the Prime

Number Theorem,” The American Mathematical Monthly, 87(9), 693–696 (1980).

A copy is online on the SUNY Stonybrook website. A similar proof with more

https://mathshistory.st-andrews.ac.uk/Biographies/Hadamard/
https://mathshistory.st-andrews.ac.uk/Biographies/Vallee_Poussin/
https://faculty.etsu.edu/gardnerr/5337/notes/Chapter4-46.pdf
https://faculty.etsu.edu/gardnerr/5337/notes/Chapter4-50.pdf
https://faculty.etsu.edu/gardnerr/5510/notes/IV-5.pdf
https://faculty.etsu.edu/gardnerr/5510/notes/IV-5.pdf
http://www.math.stonybrook.edu/~moira/mat331-spr10/papers/1980%20NewmanSimple%20Analytic%20Proof%20of%20the.pdf
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details is given in D. Zagier, “Newman’s Short Proof of the Prime Number The-

orem,” The American Mathematical Monthly, 104(8), 705–708 (1997); this paper

has the cute subtitle “Dedicated to the Prime Number Theorem on the occasion

of its 100th birthday.” A copy is online on Zagier’s webpage. An expository paper

(expository, but stilled crammed full of mathematical equations) further discussed

Newman’s proof in J. Korevaar’s “On Newman’s Quick Way to the Prime Number

Theorem,” Mathematical Intelligencer, 4(3), 109–115 (1982). A copy is online on

Korevaar’s webpage. Each of these papers were accessed 4/6/2022.

Donald J. Newman (image from Korevaar’s paper, page 108.)

Note. Following the 1896 analytic proofs of the Prime Number Theorem by

Hadamard and de la Vallée Poussin, some started to look for a proof that did

not depend on complex analysis. Such a proof is called an “elementary proof,”

though the term “elementary” is not to mean “simple,” but instead refers to the

https://people.mpim-bonn.mpg.de/zagier/files/doi/10.2307/2975232/fulltext.pdf
https://staff.fnwi.uva.nl/j.korevaar/KorNewmanPNT.pdf
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fact that such a proof would only depend on traditional (non-analytic) number

theoretic techniques. There was early skepticism that such a proof would be found.

Godfrey Harold Hardy (February 7, 1877–December 1, 1947) famously commented

in 1921:

“No elementary proof of the prime number theorem is known, and one

may ask whether it is reasonable to expect one. . . . A proof of such

a theorem, not fundamentally dependent on the theory of functions,

seems to me extraordinarily unlikely. . . . If anyone produces an elemen-

tary proof of the prime number theorem, he will show that these views

are wrong, that the subject does not hang together in the way we have

supposed, and that it is time for the books to be cast aside and for the

theory to be rewritten.”

So it was somewhat of a surprise when, in 1948, Atle Selberg (June 14, 1917–

August 6, 2007) and Paul Erdős (Mach 26, 1913–September 20, 1996) found an

elementary proof! Both proofs depend on an inequality due to Selberg. Selberg

and Erdős were both at Princeton at this time and had discussed the Prime Number

Theorem. Unfortunately, Selberg and Erdős could not agree on how to publish the

result, and each individually published a version of the proof. Their work appeared

in 1949 as:

1. Atle Selberg, “An Elementary Proof of the Prime-Number Theorem,” Annals

of Mathematics, 50(2), 305–313 (1949).

2. Paul Erdős, “On a New Method in Elementary Number Theory which leads

to an Elementary Proof of the Prime Number Theorem,” Proceedings of the

National Academy of Sciences, 35, 374–384.
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The history of the Selberg/Erdős controversy is detailed in D. Goldfield’s “The

Elementary Proof of the Prime Number Theorem: An Historical Perspective” in

Number Theory: New York Seminar 2003, eds. D. Chudnovsky, G. Chudnovsky,

and N. Nathanson, 179–192 (Spring, 2004) (this contains the Hardy quote given

above). This is available online on Goldfeld’s webpage. Another perspective on the

controversy (including the account of first-hand witnesses) is given in Joel Spencer

and Ronald Graham’s “The Elementary proof of the Prime Number Theorem,” The

Mathematical Intelligencer, 31(3), 18–23 (2009). This is available online on Ron

Graham’s webpage. Another interesting document is Ashvin Swaminathan’s “On

the Selberg-Erdős Proof of the Prime Number Theorem,” apparently the result of

a sophomore project for a class he took at Harvard! This gives a presentation of

the elementary proof, including Selberg’s symmetry formula, Mangoldt’s function,

and Möbius inversion. A copy is online on Swaminathan’s webpage. Each of these

papers were accessed 4/6/2022.

Atle Selberg Paul Erdős

Images from the MacTutor History of Mathematics Archive biographies on

Selberg and Erdős

https://www.math.columbia.edu/~goldfeld/ErdosSelbergDispute.pdf
https://mathweb.ucsd.edu/~ronspubs/09_05_prime_number.pdf
https://mathweb.ucsd.edu/~ronspubs/09_05_prime_number.pdf
https://scholar.princeton.edu/sites/default/files/ashvin/files/math229xfinalproject.pdf
https://mathshistory.st-andrews.ac.uk/Biographies/Selberg/
https://mathshistory.st-andrews.ac.uk/Biographies/Erdos/
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Note. We conclude this supplement by mentioning Graham J. O. Jameson’s book

The Prime Number Theorem, London Mathematical Society Student Texts, Series

Number 53, Cambridge University Press (2003). The Prime Number Theorem is

covered in the first three chapters. Chapter 3 gives two analytic proofs of the Prime

Number Theorem. Chapter 6, “An ‘Elementary’ Proof of the Prime Number The-

orem,” covers the proof of by Selberg and Erdős. I have online notes in preparation

based on this book for use as a supplement to either Elementary Number Theory

(MATH 3120) or Theory of Numbers (MATH 5070): Prime Number Theorem Class

Notes.

Revised: 4/6/2022

https://faculty.etsu.edu/gardnerr/5070/Prime-Number-Theorem-notes.htm
https://faculty.etsu.edu/gardnerr/5070/Prime-Number-Theorem-notes.htm

