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Supplement. The Riemann

Hypothesis-History

Note. This supplement is a continuation of my online supplement on Supplement.

The Prime Number Theorem—History. Both of these are meant to be used as

supplements to the junior-level class Elementary Number Theory (MATH 3120)

and the graduate-level class Number Theory (MATH 5070).

Note. As with the supplement on the history of the Prime Number Theorem, our

main reference is John Derbyshire’s Prime Obsession: Bernhard Riemann and the

Greatest Unsolved Problem in Mathematics, Washington, DC: Joseph Henry Press

(2003).

We start with a brief review of the Prime Number Theorem and how it relates to

the Riemann zeta function.

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Supplement-PNT-History.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Supplement-PNT-History.pdf
https://faculty.etsu.edu/gardnerr/3120/Number-Theory-notes.htm
https://faculty.etsu.edu/gardnerr/5070/Number-Theory-notes-Everest-Ward.htm
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Note. Let π(x) denote the number of primes less than or equal to x. We saw in

Supplement. The Prime Number Theorem—History that Adrien-Marie Legendre

(September 18, 1752–January 9, 1833) and Carl Friedrich Gauss (April 30, 1777–

February 23, 1855) were the first to address the asymptotic behavior of π(x). Both

based their approximations on the study of tables of integrals. Gauss proposed

(though he never published it) that the logarithmic integral Li(x) =

∫ x

2

dt

log t
. In

the early 1850s, Pafnuty Chebyshev (May 16, 1821–December 8, 1894) put bounds

on
π(x)

x/ log x
, strongly suggesting that π(x) is closely approximated by x/ log x.

Note. Bernhard Riemann (September 17, 1826–July 20, 1866) in a 9-page arti-

cle “On the Number of Primes Less Than a Given Magnitude” (published in the

November 1859 issue of Monatsberichte der Königlich Preußischen Akademie der

Wissenschaften zu Berlin) formally introduced the zeta function and set the stage

for the proof of the Prime Number Theorem. A translation appears in the appendix

of Harold Edwards’ Riemann’s Zeta Function, Academic Press 1974 (reprinted by

Dover Publications in 2001), and a translation is online on the Claymath.org web-

site (accessed 3/6/2022). Riemann’s definition of ζ(s) for Re(s) > 1:

ζ(s) =
∞∑

n=1

1

ns
=

∏
p prime

1

1− p−s
for Re(s) > 1,

which agrees with an earlier observation by Leonhard Euler (April 15, 1707–September

18, 1783) in 1737 which considered the case s real and s > 1. Riemann extended

ζ(s) to the rest complex plane, except s = 1. The zeta function is the meromorphic

on C with a simple pole at s = 1 only. This is established in Complex Analysis

2 (MATH 5520) in Section VII.8. The Riemann Zeta Function (though the class

traditionally does not reach this point). We will appeal to some of the results from

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Supplement-PNT-History.pdf
http://www.claymath.org/sites/default/files/ezeta.pdf
http://www.claymath.org/sites/default/files/ezeta.pdf
https://faculty.etsu.edu/gardnerr/5510/notes/VII-8.pdf
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the Complex Analysis 2 class in this supplement.

Image from the MacTutor History of Mathematics Archive page on Riemann

Note. The Prime Number Theorem claims that π(x) is asymptotically approxi-

mated by x/ log x (or by Li(x)). This is denoted π(x) ∼ x/ log x and π(x) ∼ Li(x).

In fact, x/ log x ∼ Li(x), so that these two approximations are equivalent. See

my online notes for The Prime Number Theorem on Section 1.1. Counting Prime

Numbers. In 1896, Jacques Hadamard (December 8, 1865–October 17, 1963) and

Charles de la Vallée Poussin (August 14, 1866–March 2, 1962) independently proved

the Prime Number Theorem. Their proofs involved the location of certain zeros

of the zeta function (namely, they both showed that the “‘nontrivial zeros” of the

zeta function lie in Re(z) < 1). It may be surprising that a result in number theory

is based so heavily on results from analysis. A search started for a proof that did

not depend on analysis (commonly called an “elementary proof”). Such a proof

was found in 1949 by Alte Selberg (June 14, 1917–August 6, 2007) and Paul Erdős

(March 26, 1913–September 20, 1996).

https://mathshistory.st-andrews.ac.uk/Biographies/Riemann/
https://faculty.etsu.edu/gardnerr/5070/notes-PNT-Jameson/PNT-Jameson-1-1.pdf
https://faculty.etsu.edu/gardnerr/5070/notes-PNT-Jameson/PNT-Jameson-1-1.pdf
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Note. In ETSU’s Complex Analysis graduate sequence (MATH 5510/5520), the

Riemann zeta function ζ(z) is defined in three steps by defining it over different

regions of the complex plane; see Section VII.8. The Riemann Zeta Function. The

extension is not accomplished by “analytic continuation,” but by relating the zeta

function to the gamma function. First, as Riemann himself did (and Euler when z

is real), for Re(z) > 1 we start with:

ζ(z) =
∞∑

n=1

1

nz
.

Next, as the first step, the definition is extended to Re(z) > 0 by giving a definition

in terms of the gamma function Γ(z) (see my online Complex Analysis notes on

Section VII.7. The Gamma Function):

ζ(z) =
1

Γ(z)

(∫ 1

0

(
1

et − 1
− 1

t

)
tz−1 dt + (z − 1)−1 +

∫ ∞

1

tz−1

et − 1

)
.

Of course, it must be shown that this definition agrees with the definition on

Re(z) > 1. For the second step (after much motivation), for −1 < Re(z) < 1 ζ(z)

is defined as

ζ(z) =
1

Γ(z)

(∫ 1

0

(
1

et − 1
− 1

t
+

1

2

)
tz−1 dt− 1

2z
+

∫ ∞

1

(
1

e1 − 1
− 1

t

)
tz−1 dt

)
.

For the third step, for Re(z) < 0 ζ(z) is defined as:

ζ(z) = 2(2π)z−1Γ(1− z)ζ(1− z) sin

(
1

2
πz

)
.

This development leads to the following description of ζ (see Theorems VII.8.13

and VII.8.14 in the Complex Analysis notes):

https://faculty.etsu.edu/gardnerr/5510/notes/VII-8.pdf
https://faculty.etsu.edu/gardnerr/5510/notes/VII-7.pdf
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Theorem VII.8.14. The zeta function is meromorphic in C with only

a simple pole at z = 1 and Res(ζ; 1) = 1. For z 6= 1, ζ satisfies the

Riemann Functional Equation:

ζ(z) = 2(2π)z−1Γ(1− z)ζ(1− z) sin

(
1

2
πz

)
.

Note/Definition. The gamma function Γ(z) has simple poles at z = 0,−1,−2, . . .

and is never 0. So Γ(1− z) has simple poles at z = 1, 2, 3, . . .. Now ζ(z) is analytic

at z = 2, 3, 4, . . ., so from Riemann’s Functional Equation,

ζ(z) = 2(2π)z−1Γ(1− z)ζ(1− z) sin

(
1

2
πz

)
,

we have for z = 2, 4, 6, . . . that ζ(1−z) sin(πz/2) = 0 and the simple pole of Γ(1−z)

cancels with this zero for z = 2, 4, 6, . . . (otherwise ζ(z) would not be analytic at

z = 2, 4, 6, . . .). So ζ(z) 6= 0 for z = 2, 4, 6, . . . (since the other factors of ζ(z) on

the right-hand side of the functional equation are nonzero for these values of z).

Now sin(πz/2) = 0 for z = −2,−4,−6, . . . and Γ(1−z) has no pole at these points,

so ζ(z) = 0 for z = −2,−4,−6, . . .. The points z = −2,−4,−6, . . . are the trivial

zeros of ζ(z). By the way, ζ(0) = −1/2 so this covers all even integer values of z

(where sin(πz/2) is 0). Any other zeros of ζ(z) are nontrivial zeros.

Note. Notice that Riemann’s Functional Equation expresses ζ(z) in terms of

ζ(1 − z). Since Γ(z) is never zero and the zeros of sin(πz/2) are addressed in the

previous note, then the only other zeros ζ(z) must also be zeros of ζ(1 − z) (and

conversely). That is, ζ(z∗) = 0 if and only if ζ(1− z∗) = 0 where z∗ is a nontrivial
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zero of ζ. So the nontrivial zeros form a set which is symmetric with respect to the

vertical line Re(z) = 1/2.

Definition. The line Re(z) = 1/2 is the critical line of the Riemann zeta function.

Note. We are now in a position to state the Riemann Hypothesis. It concerns the

location of the nontrivial zeros of ζ.

The Riemann Hypothesis.

The nontrivial zeros of the zeta function ζ(z) all lie on the critical line

Re(z) = 1/2.

Note. It is easy to show that ζ(z) 6= 0 for Re(z) > 1. For such z values we have

the representation of ζ(z) as:

ζ(z) =
∞∑

n=1

1

nz
=

∏
p prime

1

1− p−z
for Re(z) > 1.

With Re(z) > 1, we can only have ζ(z) = 0 if we have one of the factors on the

right-hand side of this representation as 0. But |p−z| = p|Re(−1)| = (1/p)|Re(z)| 6= 1

so that the right-hand side is nonzero for Re(z) > 1, and hence we now have that

the zeros of ζ(z) lie in Re(z) ≤ 1. But now from the functional equation (which

was known to Riemann; see Edward’s Riemann’s Zeta Function, page 12), we have

that for the nontrivial zeros that ζ(z) = 0 if and only if ζ(1 − z) = 0. So this

implies that the nontrivial zeros of must satisfy Re(1 − z) ≤ 1, or Re(z) ≥ 0. We

now see that the nontrivial zeros of ζ must lie in the vertical strip 0 ≤ Re(z) ≤ 1 in

the complex plane. As mentioned in my online notes on Supplement. The Prime

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Supplement-PNT-History.pdf
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Number Theorem—History, Hadamard and de le Vallée Poussin proved the Prime

Number Theorem by proving that ζ has no zeros on Re(z) = 1 (and hence, by the

functional equation, no zeros on Re(z) = 0). So we can refine our observation on

the location of the nontrivial zeros of ζ, so that we now see the region containing

all of the nontrivial zeros of ζ(z) is the vertical strip 0 < Re(z) < 1.

Definition. The vertical strip 0 < Re(z) < 1 is the critical strip of the Riemann

zeta function.

Note. We can now view the Riemann Hypothesis in a clearer context. We know

that all the nontrivial zeros of ζ lie in the critical strip. The Riemann Hypothesis

claims that they all lie on the center line of the critical strip, namely the critical

line Re(z) = 1/2. An initial theoretical result concerning the Riemann Hypoth-

esis (beyond initial computational results that determined some of the nontrivial

zeros of ζ) is due to Godfrey Harold (“G.H.”) Hardy (February 7, 1877–December

1, 1947) in 1914. Hardy proved that there are infinitely many zeros of ζ on the

critical line in his “Sur les Zéros de la Fonction ζ(s) de Riemann,” C. R. Acad.

Sci. Paris, 158, 1012-1014 (1914). Attention then turned to bounds on the number

of zeros of ζ in various segments of the critical line. In 1921 Hardy and John E.

Littlewood (June 9, 1885–September 6, 1977; a point of trivia: both Hardy and Lit-

tlewood are in my mathematical mathematical genealogy with, with Hardy as my

mathematical great-great-great-grandfather and Littlewood as my mathematical

great-great-great-great grandfather along another line—see my Mathematical Ge-

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Supplement-PNT-History.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Supplement-PNT-History.pdf
https://faculty.etsu.edu/gardnerr/Gardner-2017-Genealogy.pdf
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nealogy) proved that the number of roots on the line segment from 1/2 to 1/2+ iT

is at least KT for some positive constant K and all sufficiently large T in “The

Zeros of Riemann’s Zeta-Function on the Critical Line,” Math. Z., 10, 283–317

(1921). In 1942, Atle Selberg (June 14, 1917–August 6, 2007) who gave one of the

elementary proofs of the Prime Number Theorem in 1949, proved that the number

of such roots is at least KT log T for some positive constant K and all sufficiently

large T . Selberg’s work appeared in “On the Zeros of Riemann’s Zeta-Function,”

Skr. Norske Vid.-Akad. Oslo, No. 10 (1942). Proofs of these three result appear

in Chapter 11, “Zeros on the Line,” of Harold M. Edwards’ Riemann’s Zeta Func-

tion, Pure and Applied Mathematics, A Series of Monographs and Textbooks, San

Diego: Academic Press (1974); this book has also been in print by Dover Pub-

lications since 2001. An online copy of Edward’s book is on the UCLA website

(accessed 4/10/2022).

G. H. Hardy (left) and J. E. Littlewood (right)

Image from the MacTutor History of Mathematics Archive (accessed 4/10/2022).

https://faculty.etsu.edu/gardnerr/Gardner-2017-Genealogy.pdf
https://faculty.etsu.edu/gardnerr/Gardner-2017-Genealogy.pdf
http://www.stat.ucla.edu/~ywu/Riemann.pdf
https://mathshistory.st-andrews.ac.uk/Biographies/Hardy/
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Note. We have seen that the location of zeros of the Riemann zeta function was

used in the proof of the Prime Number Theorem (namely, the fact that no zeros

of ζ lie in Re(z) ≥ 1). But why is it that the location of the other (nontrivial)

zeros has become such a famous problem? The answer, again, relates to function

π(x) and the Prime Number Theorem. Riemann, in fact, not only proposes an

approximation for π(x), but he gives a formula for π(x). (We follow the notation

in Derbyshire’s Prime Obsession here.) Riemann showed:

π(x) =
∞∑

n=1

µ(n)

n
J( n
√

x). (∗)

We’ll soon see that for any given x the series is actually a finite sum, and we’ll

explain the functions µ and J . Here is this equation in Riemann’s own writing.

This is a close-up of a manuscript for the 1859 paper and can be found on the Clay

Mathematics Institute webpage (accessed 4/10/2022).

Riemann represents the function π(x) with a capital script F , he sums over m, and

he represents the function µ(n) in a way that agrees with the definition we give

below, so that Riemann’s (−1)µ is the same as our µ(n). Also, Riemann uses a

lower case script f where we use the symbol J .

Note/Definition. The Möbius function is defined in my online notes for Math-

ematical Reasoning (MATH 3000) on Section 6.9. Perfect Numbers, Mersenne

Primes, Arithmetic Functions as the arithmetic function µ : N → {−1, 0, 1} given

https://www.claymath.org/sites/default/files/manuscript_a.pdf
https://www.claymath.org/sites/default/files/manuscript_a.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-9.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-9.pdf
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by

µ(n) =


1 if n = 1

(−1)r if n = p1p2 · · · pr, a product of r distinct primes

0 otherwise.

Note/Definition. The J function is defined in terms of the π function as:

J(x) = π(x) +
1

2
π((

√
x) +

1

3
π( 3
√

x) +
1

4
π( 4
√

x) +
1

5
π( 5
√

x) + · · · .

See Expression 19-1 on page 299 of Derbyshire. Notice that for every x ≥ 1 we have

n
√

x → 1 as n →∞, and π(x) = 0 for x < 2 (since 2 is the least prime number). So

for fixed x ≥ 1 and n sufficiently large, we have π( n
√

x) = 0 and we see that in fact

J(x) is represented as a finite sum. In Riemann’s 1859 manuscript, you can see

his statement of this definition of J just above his statement of π(x) (or “F (x),”

as he state it) shown above. In fact, it is from the definition of J in terms of π

that Riemann derives the formula (∗) of π in terms of J . The process by which

this derivation occurs is called “Möbius inversion” (see Derbysire, page 302). The

reason for this “change in direction” is that because Riemann has a way to express

J in terms of ζ.

Note. The precise formula for j in terms of the zeta function is

J(x) = Li(x)−
∑

ρ

Li(xρ)− log 2 +

∫ ∞

x

dt

t(t2 − 1) log t
,

where the summation is taken over all ρ which are zeros of the zeta function. So

there is the connection between the zeros of ζ and π(x)!!! Notice form equation
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(∗) we have

π(x) =
∞∑

n=1

µ(n)

n
J( n
√

x) =
∞∑

n=1

µ(n)

n

(
Li(x)−

∑
ρ

Li(xρ)− log 2 +

∫ ∞

x

dt

t(t2 − 1) log t

)
.

This results in four terms on the right-hand side of the equation:

1. The principal term
µ(n)

n
Li(x),

2. The secondary term (called the “periodic term” by Riemann) −µ(n)

n

∑
ρ

Li(xρ),

3. The log 2 term
µ(n)

n
log 2, and

4. The integral term
µ(n)

n

∫ ∞

x

dt

t(t2 − 1) log t
.

The log 2 and integral terms are “negligible”; see Derbyshire pages 343 to 345 where

he introduces this terminology, and his Chapter 21 in which he goes through some

specific computations to illustrate the ideas and the inversion.

Note. According to Brian Conrey, of the American Institute of Mathematics and

the University of Bristol, in his online Riemann’s Hypothesis document, see page

5 (accessed 4/12/2022):

“Thus the difference between Riemann’s formula and Gauss’ conjecture

is, to a first estimation, about Li(xβ0) where β0 is the largest or the

supremum of the real parts of the zeros. Riemann conjectured that all

of the zeros have real part β = 1/2 so that the error term is of size

x1/2 log x. This assertion of the perfect balance of the zeros, and so of

the primes, is Riemann’s Hypothesis.”

https://aimath.org/~kaur/publications/90.pdf
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The idea of the “perfect balance” comes from the fact that the nontrivial zeros of

ζ are symmetric with respect to the critical line Re(z) = 1/2 (by the functional

equation). So if β0 = 1/2, the error term Li(x1/2) is minimized; any nontrivial zero

off of the critical line either has real part greater than 1/2 or has a symmetric zero

with real part greater than 1/2.

Revised: 4/12/2022


