Applied Combinatorics and Problem Solving

1.1. The Fundamental Counting Principle—Proofs of Theorems
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Exercise 1.1.8(b)

Exercise 1.1.8(b), continued

Exercise 1.1.8(b). Prove that
Ix U 4+2x214+3x3+---+nxnl=(Mn+1) -1

Proof (continued). Notice that by Exercise 1.1.2(c) we have

(n+1) x (n!) = (n+ 1)!. Repeatedly applying this, we have
(n+1)!=1 = nxnl+(n=1)x(n=1)'+(n=2)x (n—2)!
+(n—-2)1 -1

; nxn+-—1)xnh-1)+(n-2)x(n—2)1+---

+3x314+2x204+1x114+01—-1

= nxnl+(n=—)x(n—=D+(n-2)x(n=2)+---

+3x3+2x2+1x 11,

as claimed. (Note: We could also give an inductive proof.)
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Exercise 1.1.8(b)

Exercise 1.1.8(b). Prove that
IxU4+2x2143x314+---+nxnl=(n+1)-1.

Proof. Notice that by Exercise 1.1.2(c) we have (n+1) x (n!) = (n+ 1)!.
Repeatedly applying this, we have
(n+1)!—=1 = (n+1)xn!—1 by Exercise 1.1.2(c)

= nxn+n -1

= nxnl+(n) x (n—1)! —1 by Exercise 1.1.2(c)
nxnl+(n—-1+1)x(n=-11-1
nxnl+(n=-1)xnh-'+(n-1)-1
= nxnl+n=-1)x(nh-D+(n=-1)x(n=-2)1-1

by Exercise 1.1.2(c)

= nxnl+(n-1)x(n-+mn-2+1)x(n=-2)1—-1
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Exercise 1.1.22

Exercise 1.1.22. In how many different ways can eight coins be arranged
on an 8 x 8 checkerboard so that no two coins lie in the same row or
column?

Proof. Number the columns 1 through 8. Let ¢; be the number of choices
for a row in which to put a coin in column i for 1 </ < 8. In Column 1,
the coin can go in any of the 8 rows so that ¢; = 8. In Column 2, the coin
can go in any of the rows, except the row used with the first coin so that
¢ =7. Similarly, c3 =6, c4 =5, =4, =3, ¢c=2,and cg=1. So
by the Fundamental Counting Principle, the number of ways to arrange
the coins is

C1CrC3C4C5CeC7C8 = 8 X T X B x5 x4x3x2x1=8'=[40,320| I
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