Applied Combinatorics and Problem Solving

Chapter 1. The Mathematics of Choice

1.1. The Fundamental Counting Principle—Proofs of Theorems

Table of contents

(1) Exercise 1.1.8(b)
(2) Exercise 1.1.22

Exercise 1.1.8(b)

Exercise 1.1.8(b). Prove that
$1 \times 1!+2 \times 2!+3 \times 3!+\cdots+n \times n!=(n+1)!-1$.
Proof. Notice that by Exercise 1.1.2(c) we have $(n+1) \times(n!)=(n+1)$!. Repeatedly applying this, we have

$$
\begin{aligned}
(n+1)!-1= & (n+1) \times n!-1 \text { by Exercise 1.1.2(c) } \\
= & n \times n!+n!-1 \\
= & n \times n!+(n) \times(n-1)!-1 \text { by Exercise 1.1.2(c) } \\
= & n \times n!+(n-1+1) \times(n-1)!-1 \\
= & n \times n!+(n-1) \times(n-1)!+(n-1)!-1 \\
= & n \times n!+(n-1) \times(n-1)!+(n-1) \times(n-2)!-1 \\
& \text { by Exercise 1.1.2(c) } \\
= & n \times n!+(n-1) \times(n-1)!+(n-2+1) \times(n-2)!-1
\end{aligned}
$$

Exercise 1.1.8(b)

Exercise 1.1.8(b). Prove that
$1 \times 1!+2 \times 2!+3 \times 3!+\cdots+n \times n!=(n+1)!-1$.
Proof. Notice that by Exercise 1.1.2(c) we have $(n+1) \times(n!)=(n+1)$!. Repeatedly applying this, we have

$$
\begin{aligned}
(n+1)!-1= & (n+1) \times n!-1 \text { by Exercise 1.1.2(c) } \\
= & n \times n!+n!-1 \\
& =n \times n!+(n) \times(n-1)!-1 \text { by Exercise 1.1.2(c) } \\
= & n \times n!+(n-1+1) \times(n-1)!-1 \\
= & n \times n!+(n-1) \times(n-1)!+(n-1)!-1 \\
= & n \times n!+(n-1) \times(n-1)!+(n-1) \times(n-2)!-1 \\
& \text { by Exercise 1.1.2(c) } \\
= & n \times n!+(n-1) \times(n-1)!+(n-2+1) \times(n-2)!-1
\end{aligned}
$$

Exercise 1.1.8(b), continued

Exercise 1.1.8(b). Prove that
$1 \times 1!+2 \times 2!+3 \times 3!+\cdots+n \times n!=(n+1)!-1$.
Proof (continued). Notice that by Exercise 1.1.2(c) we have $(n+1) \times(n!)=(n+1)$!. Repeatedly applying this, we have

$$
\begin{aligned}
(n+1)!-1= & n \times n!+(n-1) \times(n-1)!+(n-2) \times(n-2)! \\
& +(n-2)!-1 \\
\vdots & \\
= & n \times n!+(n-1) \times(n-1)!+(n-2) \times(n-2)!+\cdots \\
& +3 \times 3!+2 \times 2!+1 \times 1!+0!-1 \\
= & n \times n!+(n-1) \times(n-1)!+(n-2) \times(n-2)!+\cdots \\
& +3 \times 3!+2 \times 2!+1 \times 1!
\end{aligned}
$$

as claimed. (Note: We could also give an inductive proof.)

Exercise 1.1.22

Exercise 1.1.22. In how many different ways can eight coins be arranged on an 8×8 checkerboard so that no two coins lie in the same row or column?

Proof. Number the columns 1 through 8. Let c_{i} be the number of choices for a row in which to put a coin in column i for $1 \leq i \leq 8$. In Column 1 , the coin can go in any of the 8 rows so that $c_{1}=8$. In Column 2, the coin can go in any of the rows, except the row used with the first coin so that $c_{2}=7$. Similarly, $c_{3}=6, c_{4}=5, c_{5}=4, c_{6}=3, c_{7}=2$, and $c_{8}=1$. So by the Fundamental Counting Principle, the number of ways to arrange the coins is

$$
c_{1} c_{2} c_{3} c_{4} c_{5} c_{6} c_{7} c_{8}=8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=8!=40,320
$$

Exercise 1.1.22

Exercise 1.1.22. In how many different ways can eight coins be arranged on an 8×8 checkerboard so that no two coins lie in the same row or column?

Proof. Number the columns 1 through 8. Let c_{i} be the number of choices for a row in which to put a coin in column i for $1 \leq i \leq 8$. In Column 1, the coin can go in any of the 8 rows so that $c_{1}=8$. In Column 2, the coin can go in any of the rows, except the row used with the first coin so that $c_{2}=7$. Similarly, $c_{3}=6, c_{4}=5, c_{5}=4, c_{6}=3, c_{7}=2$, and $c_{8}=1$. So by the Fundamental Counting Principle, the number of ways to arrange the coins is

$$
c_{1} c_{2} c_{3} c_{4} c_{5} c_{6} c_{7} c_{8}=8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=8!=40,320
$$

