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Theorem 1.2.2

Theorem 1.2.2

Theorem 1.2.2. Pascal’s Relation.
If 1 ≤ r ≤ n, then C (n + 1, r) = C (n, r − 1) + C (n, r).

Proof. Let S be the (n + 1)-element set S = {x1, x2, . . . , xn, y}. Its
r -element subsets, of which there are C (n + 1, r), can be partitioned into
two families, those that contain y and those that do not.

A subset that
contains y is determined by the remaining r − 1 elements from set
{x1, x2, . . . , xn}. Since there are C (n, r − 1) ways to choose the r − 1
elements from {x1, x2, . . . , xn}, there are C (n, r − 1) subsets containing y .
The r -element subsets that do not contain y are exactly the r -element
subsets of {x1, x2, . . . , xn}, of which there are C (n, r). So, by the Second
Counting Principle, the number of r -subsets of S is both C (n + 1, r) and
C (n, r − 1) + C (n, r) or C (n + 1, r) = C (n, r − 1) + C (n, r), as
claimed.

() Applied Combinatorics and Problem Solving March 26, 2022 3 / 7



Theorem 1.2.2

Theorem 1.2.2

Theorem 1.2.2. Pascal’s Relation.
If 1 ≤ r ≤ n, then C (n + 1, r) = C (n, r − 1) + C (n, r).

Proof. Let S be the (n + 1)-element set S = {x1, x2, . . . , xn, y}. Its
r -element subsets, of which there are C (n + 1, r), can be partitioned into
two families, those that contain y and those that do not. A subset that
contains y is determined by the remaining r − 1 elements from set
{x1, x2, . . . , xn}. Since there are C (n, r − 1) ways to choose the r − 1
elements from {x1, x2, . . . , xn}, there are C (n, r − 1) subsets containing y .
The r -element subsets that do not contain y are exactly the r -element
subsets of {x1, x2, . . . , xn}, of which there are C (n, r).

So, by the Second
Counting Principle, the number of r -subsets of S is both C (n + 1, r) and
C (n, r − 1) + C (n, r) or C (n + 1, r) = C (n, r − 1) + C (n, r), as
claimed.

() Applied Combinatorics and Problem Solving March 26, 2022 3 / 7



Theorem 1.2.2

Theorem 1.2.2

Theorem 1.2.2. Pascal’s Relation.
If 1 ≤ r ≤ n, then C (n + 1, r) = C (n, r − 1) + C (n, r).

Proof. Let S be the (n + 1)-element set S = {x1, x2, . . . , xn, y}. Its
r -element subsets, of which there are C (n + 1, r), can be partitioned into
two families, those that contain y and those that do not. A subset that
contains y is determined by the remaining r − 1 elements from set
{x1, x2, . . . , xn}. Since there are C (n, r − 1) ways to choose the r − 1
elements from {x1, x2, . . . , xn}, there are C (n, r − 1) subsets containing y .
The r -element subsets that do not contain y are exactly the r -element
subsets of {x1, x2, . . . , xn}, of which there are C (n, r). So, by the Second
Counting Principle, the number of r -subsets of S is both C (n + 1, r) and
C (n, r − 1) + C (n, r) or C (n + 1, r) = C (n, r − 1) + C (n, r), as
claimed.

() Applied Combinatorics and Problem Solving March 26, 2022 3 / 7



Theorem 1.2.2

Theorem 1.2.2

Theorem 1.2.2. Pascal’s Relation.
If 1 ≤ r ≤ n, then C (n + 1, r) = C (n, r − 1) + C (n, r).

Proof. Let S be the (n + 1)-element set S = {x1, x2, . . . , xn, y}. Its
r -element subsets, of which there are C (n + 1, r), can be partitioned into
two families, those that contain y and those that do not. A subset that
contains y is determined by the remaining r − 1 elements from set
{x1, x2, . . . , xn}. Since there are C (n, r − 1) ways to choose the r − 1
elements from {x1, x2, . . . , xn}, there are C (n, r − 1) subsets containing y .
The r -element subsets that do not contain y are exactly the r -element
subsets of {x1, x2, . . . , xn}, of which there are C (n, r). So, by the Second
Counting Principle, the number of r -subsets of S is both C (n + 1, r) and
C (n, r − 1) + C (n, r) or C (n + 1, r) = C (n, r − 1) + C (n, r), as
claimed.

() Applied Combinatorics and Problem Solving March 26, 2022 3 / 7



Theorem 1.2.6

Theorem 1.2.6

Theorem 1.2.6. The rows of Pascal’s triangle are unimodal. That is, the
numbers in each row increase from left to right, up to the middle of the
row and then decrease from the middle to the right-hand end.

Proof. If n > 2r + 1, then the ratio

C (n, r + 1)

C (n, r)
=

r !(n − r)!n!

(r + 1)!(n − r − 1)!n!
=

n − r

r + 1
> 1,

so that C (n, r + 1) > C (n, r) for r < (n − 1)/2. That is the numbers in
each row increase from left to right up to the middle of the row. By the
symmetry property, C (n, r) = C (n, n − r), the row decreases from the
middle to the right-hand end (that is, for r > (n − 1)/2), as claimed.
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Exercise 1.2.18

Exercise 1.2.18

Exercise 1.2.18. Packing for a vacation, a young man decides to take 3
long-sleeve shirts, 4 short-sleeve shirts, and 2 pairs of pants. If he owns 16
long-sleeve shirts, 20 short-sleeve shirts, and 13 pairs of pants, in how
many different ways can he pack for the trip?

Proof. We consider the ways to choose the long-sleeve shirts, short-sleeve
shirts, and the pants. By Note 1.2.C, we can choose r = 3 long-sleeve
shirts from a set of n = 16 long-sleeve shirts in

C (16, 3) =
16!

13!3!
=

16× 15× 14

3× 2× 1
= 560 ways. Similarly, we can choose

r = 4 short-sleeve shirts from a set of n = 20 short-sleeve shirts in

C (20, 4) =
20!

16!4!
=

20× 19× 18× 17

4× 3× 2× 1
= 4845 ways. Also, we can choose

r = 2 pairs of pants from a set of n = 13 pairs of pants in

C (13, 2) =
13!

11!2!
=

13× 12

2× 1
= 78 ways.

By the Fundamental Counting

Principle, there are 560× 4845× 78 = 211,629,600 ways to choose the
desired clothes, and so this many ways to pack for the trip. �
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Exercise 1.2.26

Exercise 1.2.26

Exercise 1.2.26. Let S be an n-element set, where n ≥ 1. If A is a subset
of S , denote by o(A) the cardinality of (number of elements in) A. Say
that A is odd (even) if o(A) is odd (even). Prove that the number of odd
subsets of S is equal to the number of its even subsets.

Proof. Let x ∈ S . We partition the subsets of S into two categories: (1)
category C1 of those that contain element x , and (2) category C2 of those
that do not contain element x . We set up a correspondence between the
odd sets in category C1 with the even sets in category C2, and a
correspondence between the even sets in category C1 with the odd sets in
category C2.

For each A a subset of S with A odd and in category C1, there is the
corresponding even set in category C2; namely, the set A \ {x}.
Conversely, for each even set B in category C2, there is the corresponding
odd set A = B ∪ {x} in category C1. So the number of odd sets in
category C1 is the same as the number of even sets in category C2.
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Exercise 1.2.26

Exercise 1.2.26 (continued)

Exercise 1.2.26. Let S be an n-element set, where n ≥ 1. If A is a subset
of S , denote by o(A) the cardinality of (number of elements in) A. Say
that A is odd (even) if o(A) is odd (even). Prove that the number of odd
subsets of S is equal to the number of its even subsets.

Proof (continued). Similarly, for each A a subset of S with A even in
category C1, there is the corresponding odd set in category C2; namely the
set A \ {x}. Conversely, for each odd set B in category C2, there is the
corresponding even set A = B ∪{x} in category C1. So the number of even
sets in category C1 is the same as the number of odd sets in category C2.

Since categories C1 and C2 are disjoint and union to give the set of all
subsets of S (that is, P(S) = C1 ∪ C2), then by the Second Counting
Principle (Principle 1.2.3) the number of even subsets of S equals the
number of odd subsets of S , as claimed.
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