Applied Combinatorics and Problem Solving

Chapter 1. The Mathematics of Choice 1.3. Elementary Probability—Proofs of Theorems

Table of contents

(1) Theorem 1.3.5
(2) Theorem 1.3.6
(3) Theorem 1.3.11
(4) Corollary 1.3.12. Bayes' First Rule

Theorem 1.3.5

Theorem 1.3.5. Let E be a fixed but arbitrary sample space. If A and B are subsets of E, then

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B) .
$$

Proof. The number of elements in $A \cup B$ is the number of elements in A plus the number of elements in B minus the number of elements in both A and B (that is, minus $o(A \cap B)$), so that

$$
o(A \cup B)=o(A)+o(B)-o(A \cap B) .
$$

(This is a special case of the Principle of Inclusion and Exclusion, to be seen in Chapter 2.) Dividing both sides of this equation by $o(E)$ gives

$$
=P(A)+P(B)-P(A \cap B)=P(A)+P(B)-P(A \text { and } B),
$$

by Definition 1.3.4.

Theorem 1.3.5

Theorem 1.3.5. Let E be a fixed but arbitrary sample space. If A and B are subsets of E, then

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B) .
$$

Proof. The number of elements in $A \cup B$ is the number of elements in A plus the number of elements in B minus the number of elements in both A and B (that is, minus o $(A \cap B)$), so that

$$
o(A \cup B)=o(A)+o(B)-o(A \cap B)
$$

(This is a special case of the Principle of Inclusion and Exclusion, to be seen in Chapter 2.) Dividing both sides of this equation by $o(E)$ gives

$$
\begin{gathered}
\frac{o(A \cup B)}{o(E)}=\frac{o(A)}{o(E)}+\frac{o(B)}{o(E)}-\frac{o(A \cap B)}{o(E)} \\
=P(A)+P(B)-P(A \cap B)=P(A)+P(B)-P(A \text { and } B),
\end{gathered}
$$

by Definition 1.3.4.

Corollary 1.3.6

Corollary 1.3.6. Let E be a fixed but arbitrary sample space. If A and B are subsets of E, then $P(A$ or $B) \leq P(A)+P(B)$, with equality if and only if A and B are disjoint.

Proof. Since $P(A$ and $B) \geq 0$, then the inequality follows from Theorem 1.3.5. Equality holds (by Theorem 1.3.5) if and only if $P(A$ and $B)=0$, which holds if and only if $o(A \cap B)=0$ or if and only if $A \cap B=\varnothing$ (i.e., A and B are disjoint), as claimed.

Corollary 1.3.6

Corollary 1.3.6. Let E be a fixed but arbitrary sample space. If A and B are subsets of E, then $P(A$ or $B) \leq P(A)+P(B)$, with equality if and only if A and B are disjoint.

Proof. Since $P(A$ and $B) \geq 0$, then the inequality follows from Theorem 1.3.5. Equality holds (by Theorem 1.3.5) if and only if $P(A$ and $B)=0$, which holds if and only if $o(A \cap B)=0$ or if and only if $A \cap B=\varnothing$ (i.e., A and B are disjoint), as claimed.

Theorem 1.3.11

Theorem 1.3.11. Let E be a fixed but arbitrary sample space. If A and B are subsets of E, then

$$
P(A \text { and } B)=P(A) P(B \mid A)
$$

Proof. Let $D=o(E), a=o(A)$, and $N=o(A \cap B)$. If $a=0$, both sides of the claimed equation are 0 and the claim holds. Otherwise, $P(A)=a / D, P(B \mid A)=N / a$ (by Definition 1.3.10), and

$$
P(A) P(B \mid A)=(a / D)(N / a)=N / D=P(A \cap B)=P(A \text { and } B),
$$

Theorem 1.3.11

Theorem 1.3.11. Let E be a fixed but arbitrary sample space. If A and B are subsets of E, then

$$
P(A \text { and } B)=P(A) P(B \mid A) .
$$

Proof. Let $D=o(E), a=o(A)$, and $N=o(A \cap B)$. If $a=0$, both sides of the claimed equation are 0 and the claim holds. Otherwise, $P(A)=a / D, P(B \mid A)=N / a$ (by Definition 1.3.10), and

$$
P(A) P(B \mid A)=(a / D)(N / a)=N / D=P(A \cap B)=P(A \text { and } B),
$$

as claimed.

Corollary 1.3.12

Corollary 1.3.12. Bayes' First Rule.
Let E be a fixed but arbitrary sample space. If A and B are subsets of E, then $P(A) P(B \mid A)=P(B) P(A \mid B)$.

Proof. By Theorem 1.3.11, $P(A$ and $B)=P(A) P(B \mid A)$ and (interchanging A and $B) P(B$ and $A)=P(B) P(A \mid B)$. Of course $P(A$ and $B)=P(B$ and $A)$, so that

$$
P(A) P(B \mid A)=P(B) P(A \mid B),
$$

as claimed.

Corollary 1.3.12

Corollary 1.3.12. Bayes' First Rule.
Let E be a fixed but arbitrary sample space. If A and B are subsets of E, then $P(A) P(B \mid A)=P(B) P(A \mid B)$.

Proof. By Theorem 1.3.11, $P(A$ and $B)=P(A) P(B \mid A)$ and (interchanging A and $B) P(B$ and $A)=P(B) P(A \mid B)$. Of course $P(A$ and $B)=P(B$ and $A)$, so that

$$
P(A) P(B \mid A)=P(B) P(A \mid B),
$$

as claimed.

