
1.1. The Fundamental Counting Principle 1

1.1. The Fundamental Counting Principle

Note. According to ETSU’s own Dr. Robert Beeler, “Put simply, combinatorics

is the mathematics of counting.” This is the first sentence in the first section of his

How to Count: An Introduction to Combinatorics and Its Applications (Springer,

2015). In this section, we state and apply the Fundamental Counting Principle.

We will use this idea throughout the course (so often that, after some experience,

we will not even reference it).

Note. You will encounter the Fundamental Counting Principle in several of your

other classes. For example, you are likely to see it in:

Foundations of Probability and Statistics-Calculus Based (MATH 2050).

See my online notes for this class on Section 2.2. Counting Methods,

Mathematical Reasoning (MATH 3000). See my online notes on Section 4.1.

Cardinality; Fundamental Counting Principles (notice Theorem 4.7 which ex-

presses the counting principle in terms of the size of a Cartesian product of

sets),

Graduate Level Combinatorics. This is not an official ETSU class (but easily

could be). See my notes on Section 1.1. The Sum and Product Rules for

Sets (notice Lemma 1.1.1(b) where, again, the counting principle is stated in

terms of Cartesian products; the Fundamental Counting Principle called the

“Product Rule” in this setting).

https://faculty.etsu.edu/gardnerr/2050/Navidi-notes/Navidi-2-2.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-1.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-1.pdf
https://faculty.etsu.edu/gardnerr/Combinatorics/Notes-Sagan/Sagan-1-1.pdf
https://faculty.etsu.edu/gardnerr/Combinatorics/Notes-Sagan/Sagan-1-1.pdf
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Note. The Fundamental Counting Principle states:

Consider a (finite) sequence of decisions. Suppose the number of choices

for each individual decision is independent of decisions made previously

in the sequence. Then the number of ways to make the whole sequence

of decisions is the product of these numbers of choices.

Symbolically, suppose ci is the number of choices for decision i, where 1 ≤ i < n.

Assuming the number of choices ci+1 does not depend on the previous choices made

for 1, 2, . . . , i, then the number of different ways to make the sequence of decisions

is c1 × c2 × · · · × cn.

Note. Consider the letters L, U, C, K. We can use the Fundamental Counting

Principle to count the number of different four-letter words we can make by using

these letters (each one exactly once in a word). By making an exhaustive list, we

see that there are 24 possible words; see Figure 1.1.1.

Note. We now apply the Fundamental Counting Principle to the number of of

words one can make from letters L, U, C, K. There are four decisions to be made:

(1) decide on the first letter, (2) decide on the second letter, (3) decide on the

third letter, and (4) decide on the fourth letter. With the ci notation mentioned
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in the statement of the Fundamental Counting Principle, we have c1 = 4 ways to

choose the first letter (i.e., to make the first decision), c2 = 3 ways to choose the

second letter (it can be any of the four letters, other than the first one chosen),

c3 = 2 ways to choose the third letter (it can be any of the four letters, other

than the first two), and c4 = 1 ways to choose the fourth letter (after the first

three decisions, there is only one choice for the last letter). So the number of

ways the decisions can be made (i.e., that number of words that can be made) is

c1 × c2 × c3 × c4 = 4× 3× 2× 1 = 24, as observed in Figure 1.1.1.

Definition. For positive integer n, define n-factorial as n! = n× (n−1)×· · · 2×1.

Define 0! = 1.

Note. We see that the number of four-letter words that can be made with the

letters L, U, C, K is 4!. It can similarly be shown that the number of n-letter

words that can be made from n different letters (with the same rules that each

letter is used only once in each word) is n!.

Note. Now consider the number of four-letter words that can be made from the

letters L, O, O, T. This time, we repeat letters. If we were to subscript the O’s and

considered then the four different letters L, O1, O2, T, then we know that there are

4! = 24 different words that result. Now if we ignore the subscripts on the O’s we

have words repeated in the list of 24. For example, words LO1TO2 and LO2TO1

both yield the word LOTO when the subscripts are ignored. In this way, we see
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that the list of 24 words repeats every word twice. So the number of different words

that can be made with the letters L, O, O, T are 4!/2 = 12.

Note. Next, consider the number of four-letter words that can be made from the

letters L, U, L, L. If we again add subscripts to the repeated letters and consider

the letters L1, U, L2, L3 then we get 4! = 24 different words. This ignoring the

subscripts yields the same word several times. With the subscripts, L1,L2, and L3

occur is some positions in the word. We can freely interchange these letters among

these positions, and when the subscripts are dropped we end up ultimately with

the same word using the letter L, U, L, L. In these three positions, we can have any

of L1, L2, L3 in the first position, and of the remaining two letters in the second

position, and the final remaining subscripted L must be in the third position. So

there are 3! = 6 words based on L1, U, L2, L3 for each word based on L, U, L, L. For

example, the word LULL corresponds to the words L1UL2L3, L1UL3L2, L2UL1L3,

L2UL3L1, L3UL1L2, and L3UL2L1. Therefore, the number of different words that

an be made with the letters L, U, L, L is 4!/6 = 4. These four words are LLLU,

LLUL, LULL, and ULLL.

Note. For a related problem, consider the letters M, I, S, S, I, S, S, I, P, P, I. Here

there are 11 letters, with four I’s, four S’s, two P’s, and one M. Again, we could

subscript the letters and calculate that there are 11! resulting words. The fact that

we can interchange P1 and P2 when ignoring the subscripts, we see that 11! is an

overcount by a factor of 2 with respect to the P’s. Similarly, 11! is an overcount
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by a factor of 4! with respect to both the I’s and the S’s. So the total number

of different words that can be made from the 11 letters is
11!

4!4!2!1!
= 34,650 (we

include the factor of 1! for the letter M to better see the pattern. This inspires the

next definition.

Definition 1.1.2. The multinomial coefficient is

(
n

r1, r2, . . . , rk

)
=

n!

r1!r2! · · · rk!
,

where r1 + r2 + · · · rk = n.

Note 1.1.A. The number of different words of length n that can be made from a

collection of letters, where there are k different letters with repetitions of r1, r2, . . . , rk

times (so that r1 + r2 + · · · rk = n), is

(
n

r1, r2, . . . , rk

)
=

n!

r1!r2! · · · rk!
.

Note. Merris includes a discussion of the POSTNET (“Postal Numeric Encoding

Technique”) barcodes that are printed at the bottom of letters that go through the

United States Postal Service. The numerals 0 through 9 are each represented by five

vertical lines where three are short lines and two are long lines. So we have words

of length five consisting of two letters, one is repeated three times and the other is

repeated twice. In the notation above we have n = 5, k = 2, r1 = 3, and r2 = 2.

So the number of “words” we can make is

(
n

r1, r2, . . . , rk

)
=

5!

3!2!
=

120

12
= 10, as

desired. The representations of 0 through 9 are given in Figure 1.1.3. (You might

see a hidden use of the idea of binary-type of representation in this figure, but you

need to think of 0 as following 9 for this interpretation to be consistent.)
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What is printed on an envelope is 52 vertical lines. The first and last vertical

lines are long and are not part of the encoded number. Then the 5-digit ZIP code

is given, followed by the “+4 (often representing a box number), and finally a

check digit. The check digit is chosen so that the sum of the total of ten digits

is a multiple of 10. So the 52 vertical lines correspond to the two large vertical

lines on the end and 5 × 10 = 50 vertical lines that represent the ZIP+4 and the

check digit. For example, the ETSU Department of Mathematics and Statistics

has a ZIP+4 code of 37614-0663 (the department’s box number is 70663). Since

3+7+6+1+4+0+6+6+3 = 36 then the check digit is 4. So the POSTNET barcode

will represent 3761406634 and is given in the next figure (with an explanation in

color).

Example 1.1.4. If we can write a given positive integer as a product of powers of

prime numbers (which can be done in a unique way by the Fundamental Theorem of

Arithmetic; see either my online notes for Mathematical Reasoning (MATH 3000)

on Section 6.3. Divisibility: The Fundamental Theorem of Arithmetic, or notes for

Elementary Number Theory (MATH 3120) on Section 2. Unique Factorization),

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-3.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-2.pdf
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then we can use this factorization and the Fundamental Counting Principle to find

the number of divisors of the positive integer. For example, for n = 360 we have

360 = 23 × 32 × 5. If d is a divisor of 360, then by the Fundamental Theorem

of Arithmetic we must have d = 2a × 3b × 5c where 0 ≤ a ≤ 3, 0 ≤ b ≤ 2, and

0 ≤ c ≤ 1. So to get a divisor, we choose the exponents a, b, c. There are four

choices for a, three choices for b, and two choices for c. Hence, by the Fundamental

Counting Principle there are 4 × 3 × 2 = 24 choices for the exponents and hence

24 resulting divisors of 360.

Exercise 1.1.8(b). Prove that 1× 1!+2× 2!+3× 3!+ · · ·+n×n! = (n+1)!− 1.

Exercise 1.1.22. In how many different ways can eight coins be arranged on an

8× 8 checkerboard so that no two coins lie in the same row or column?
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