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1.2. Pascal’s Triangle

Note. In the previous section we considered the number of words that can be made

from different collections of letters. In a word, the order of the letters matter! In

this section we consider collections in which order does not matter (such as when

you are dealt a hand of cards; the order in which you were dealt the cards does not

matter, all that matters is the cards which you hold). We count these combinations

of objects.

Note/Definition. Consider a collection of n elements in set S. We want to count

the number of ways to choose r-element subsets of S. Denote this quantity as

C(n, r), read “n-choose-r.” Two values of this quantity are clear: C(n, n) = 1

and C(n, 1) = n. That is, there is one way to choose all n elements of S, and

there are n ways to choose a single element of set S (since S has n elements).

Notice that choosing a subset of S of size r is equivalent to choosing a subset

of size n − r; in the first case you are choosing r elements to “take” and n − r

elements to “leave,” and in the second case you are choosing n − r elements to

take and r elements to leave. But when the elements to take are chosen, then

the elements to leave are determined. Because of this, parameter C(n, r) has the

symmetry property: C(n, r) = C(n, n− r). Notice that this property and the fact

that C(n, n) = 1 implies that C(n, 0) = 1; of course there is only one way to choose

none of the elements of S, namely to choose the null set ∅. By convention, we take

C(0, 0) = 1. Before we state our first result concerning C(n, r), we need another

counting principle.
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Principle 1.2.3. The Second Counting Principle.

If a set can be expressed as the disjoint union of two (or more) subsets, then the

number of elements in the set is the sum of the numbers of elements in the subsets.

Theorem 1.2.2. Pascal’s Relation.

If 1 ≤ r ≤ n, then C(n + 1, r) = C(n, r − 1) + C(n, r).

Note/Definition. Merris presents three tables values of C(n, r), each in a trian-

gular pattern (see pages 12 and 13). Instead, we consider the following image.

From Pascal’s Triangle and its Patterns (accessed 3/25/2022).

This collection of hexagons contains the values of C(n, r) in the pattern:

C(0, 0)

C(1, 0) C(1, 1)

C(2, 0) C(2, 1) C(2, 2)

C(3, 0) C(3, 1) C(3, 2) C(3, 3)

... ...
... . . .

https://ptri1.tripod.com/


1.2. Pascal’s Triangle 3

In each hexagon, notice that the entry is the sum of the entries in the adjoining

hexagons to the upper left and upper right (this is Pascal’s Relation); this gives

a geometric interpretation of Pascal’s Relation (Theorem 1.2.2). For example, in

Row 4 we have an entry of 6, with entries of 3 to both the upper left and upper

right. This corresponds to the relationship C(4, 2) = C(3, 1)+C(3, 2). Notice that

this follows from Pascal’s Relation with n = 3 and r = 2. The arrangements above

are called Pascal’s triangle.

Note 1.2.A. An additional observation is the value of the sum of each row of

Pascal’s triangle. Taking the sum of the values in each row (starting with Row 0)

we get: 1, 1 + 1 = 2, 1 + 2 + 1 = 4, 1 + 3 + 3 + 1 = 8, 1 + 4 + 6 + 4 + 1 = 16,

1 + 5 + 10 + 10 + 5 + 1 = 32, etc. It appears that the sum of a row is a power of 2;

in fact, the sum of the entries in Row n appears to be 2n. Summing along Row n

gives us the number of all subsets of n-element set S,

C(n, 0) + C(n, 1) + · · ·+ C(n, n− 1) + C(n, n) =
n∑

r=0

C(n, r),

since C(n, r) is the number of subsets set S of size r and we letting r range over

all of the possible sizes of a subset of S here. Now we can count the number of

subsets of S = x1, x2, . . . , xn} by considering which elements are and which are not

in a possible subset. We can go through the elements one at a time and make a

decision of (1) include, or (2) exclude that element in subset. So for element x1

there are 2 possible decisions, for element x2 there are two possible decisions, . . . ,

for element xn there are two possible decisions. So, by the Fundamental Counting

Principle, there are 2× 2× · · · × 2 = 2n possible subsets of set S.
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Note. You are likely familiar with the idea that a set of cardinality n has 2n

subsets. You see this in Mathematical Reasoning (MATH 3000) where the power

set of a given set S is defined to be the set of all subsets of S, denoted P(S); see my

online notes for Mathematical Reasoning on Section 2.10. Mathematical Induction

and Recursion (notice Theorem 2.69).

Note 1.2.B. Related to Note 1.2.A, we can construct a word of length n based on

the letters Y and N which is associated with each subset of S = {x1, x2, . . . , xn}. We

described the construction of a subset of S and a sequence of decisions, which we

can reword as (1) YES include element xi in the subset, or (2) NO do not include xi

in the subset. For example the word on length n of all N’s corresponds to the subset

∅ of set S. The word of length n of all Y’s corresponds to the subset S itself. Each

such word corresponds to a unique subset of S, and each subset of S corresponds

to a unique such word. So these are equivalent approaches to the same question.

Now such a word of length n that contains r Y’s (where 0 ≤ r ≤ n), and hence

n = r N’s, corresponds a subset of S that contains r elements. We know from Note

1.1.A, that in terms of the multinomial coefficient there are

(
n

r, n− r

)
=

n!

r!(n− r)!
words on the two letters Y and N that contain r Y’s and n−r N’s. Since this is the

same as the number of subsets of S of a set of size r, then we have the following

algebraic representation of C(n, r):

C(n, r) =
n!

r!(n− r)!
.

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-2-10.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-2-10.pdf
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Note 1.2.C. An alternative notation for n-choose-r is C(n, r) =

(
n

r

)
. It is also

commonly referred to as the “number of combinations of r objects from a set of size

n.” This is often the case in a statistics setting; see my online notes for Foundations

of Probability and Statistics-Calculus Based (MATH 2050) on Section 2.2. Counting

Methods (notice Note 2.2.D). You may have also seen C(n, r) referred to as the

binomial coefficients (consistent with the “multinomial coefficient” term used in

Section 1.1. This is because when we raise the binomial (x + y) to the nth power

we get:

(x + y)n =
n∑

r=0

C(n, r)xn−ryr.

See my online notes for Discrete Structures (MATH 2710) on Section 4.3. Permu-

tations and Combinations; notice Theorem 4.3.6, The Binomial Theorem, which is

to be proved by induction. Notice that with x = y = 1, the Binomial Theorem

gives 2n =
n∑

r=0

C(n, r), as observed above in Note 1.2.A.

Example 1.2.4. Consider a standard deck of 52 cards (with no jokers). In five-card

poker, one is dealt 5 cards. How many possible hands of 5 cards are there?

Solution. We are interested in a subset of size r = 5 from a set S of size n = 52.

So the number of such subsets (and hence the number of hands of 5 cards from a

deck of 52) is

C(52, 5) =
52!

5!(52− 5)!
=

52!

5!47!
=

52× 51× 50× 49× 48× 47!

5!× 47!

=
52× 51× 50× 49× 48

5× 4× 3× 2× 1
= 2,598,960. �

https://faculty.etsu.edu/gardnerr/2050/Navidi-notes/Navidi-2-2.pdf
https://faculty.etsu.edu/gardnerr/2050/Navidi-notes/Navidi-2-2.pdf
https://faculty.etsu.edu/gardnerr/2710/notes/4-3.pdf
https://faculty.etsu.edu/gardnerr/2710/notes/4-3.pdf
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Theorem 1.2.6. The rows of Pascal’s triangle are unimodal. That is, the numbers

in each row increase from left to right, up to the middle of the row and then decrease

from the middle to the right-hand end.

Exercise 1.2.18. Packing for a vacation, a young man decides to take 3 long-

sleeve shirts, 4 short-sleeve shirts, and 2 pairs of pants. If he owns 16 long-sleeve

shirts, 20 short-sleeve shirts, and 13 pairs of pants, in how many different ways can

he pack for the trip?

Exercise 1.2.26. Let S be an n-element set, where n ≥ 1. If A is a subset of S,

denote by o(A) the cardinality of (number of elements in) A. Say that A is odd

(even) if o(A) is odd (even). Prove that the number of odd subsets of S is equal to

the number of its even subsets.

Revised: 3/25/2022


