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1.5. Combinatorial Identities

Note. In this section, we relate the binomial coefficients C(n, r) =

(
n

r

)
(see Note

1.2.C) to the multinomial coefficients

(
n

r1, r2, . . . , rk

)
where r1 + r2 + · · ·+ rk = n

(see Definition 1.1.2). We use these relationships to find a formula for the sum of

the mth power of the first n natural numbers.

Note. As we saw in Note 1.2.B, the binomial coefficient C(n, r) is a special case

of the multinomial coefficients, since C(n, r) =
n!

r!(n− r)!
=

(
n

r, n− r

)
. The next

result expresses the general multinomial coefficient in terms of binomial coefficients.

Theorem 1.5.1. If r1 + r2 + · · · rk = n, then(
n

r1, r2, . . . , rk

)
=

(
n

r1

)(
n− r1

r2

)(
n− r1 − r2

r3

)
· · ·

(
n− r1 − r2 − · · · − rk−1

rk

)
.

Note. We can also use summations to relate certain binomial coefficients to sums

of other binomial coefficients, as follows.

Theorem 1.5.2. Chu’s Theorem.

If n ≥ r, then

n∑
k=0

C(k, r) = C(r, r) + C(r + 1, r) + C(r + 2, r) + · · ·+ C(n, r) = C(n + 1, r + 1)

(where
∑n

k=0 C(k, r) =
∑n

k=r C(k, r) because C(k, r) = 0 for k < r).
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Note. In Calculus 1 (MATH 1910), you encounter the following formulae when

you are introduced to Riemann integration:
n∑

k=1

k =
n(n + 1)

2

n∑
k=1

k2 =
n(n + 1)(2n + 1)

6

n∑
k=1

k3 =

(
n(n + 1)

2

)2

.

(See my online Calculus 1 notes on Section 5.2. Sigma Notation and Limits of

Finite Sums, and notice Theorem 5.2.B.) These equations are commonly proved

using mathematical induction. For example, the first formula is proved inductively

in Mathematical Reasoning (MATH 3000); see my online notes for Mathematical

Reasoning on Section 2.10. Mathematical Induction and Recursion, and notice

Example 2.67. Notice that
n∑

k=1

k =
n(n + 1)

2
= C(n + 1, 2). Also, we can express

k2 = k + k(k − 1) = C(k, 1) + 2C(k, 2) so that we can conclude

n∑
k=1

k2 =
n∑

k=1

C(k, 1) + 2
n∑

k=1

C(k, 2).

By Chu’s Theorem (Theorem 1.5.2) we have (with r = 1 and r = 2):

n∑
k=0

C(k, 1) = C(n + 1, 2) and
n∑

k=0

C(k, 2) = C(n + 1, 3),

and, as expected, we have
n∑

k=1

k2 =
n∑

k=1

C(k, 1) + 2
n∑

k=1

C(k, 2) = C(n + 1, 2) + 2C(n + 1, 3)

=
n(n + 1)

2
+ 2

(n + 1)n(n− 1)

6
= n(n + 1)

(
1

2
+

2(n− 1)

6

)
= n(n + 1)

3 + 2(n− 1)

6
=

m(n + 1)(2n− 1)

6
.

Note. For m = 2, we have in the previous note that
∑n

k=1 k2 =
∑n

k=1 C(k, 1) +

2
∑n

k=1 C(k, 2). If for general m ∈ N we could find a formula of the form km =

https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c5s2-14E.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c5s2-14E.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-2-10.pdf
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r=1 ar,mC(k, r) (where the ar,m are independent of k), then we could express the

sum of the mth powers of k as

n∑
k=1

km =
n∑

k=1

m∑
r=1

ar,mC(k, r) =
m∑

r=1

ar,m

n∑
k=1

C(k, r) =
m∑

r=1

ar,mC(n + 1, r + 1),

where the last equality holds by Chu’s Theorem (Theorem 1.5.2). In fact, we will

have a formula for km =
∑m

r=1 ar,mC(k, r) below (see Theorem 1.5.5) where the ar,m

themselves are expressed in terms of binomial coefficients. To further illustrate this

idea, consider the case of m = 3. We need the coefficients x = a1,3, y = a2,3, and

z = a3,3 such that

k3 = a1,3C(k, 1) + a2,3C(k, 2) + a3,3C(k, 3) = xC(k, 1) + yC(k, 2) + zC(k, 3)

= xk + y
k(k − 1)

2
+ z

k(k − 1)(k − 2)

6
.

Collecting together the powers of k, we have

(z − 6)k3 + (3y − 3z)k2 + (6x− 3y + 2z)k = 0,

so that we need to solve the system of linear equations

6x − 3y + 2z = 0

3y − 3z = 0

z = 6.

The unique solution to this system is x = a1,3 = 1, y = a2,3 = 6, and z = a3,3 = 6,

so that k3 = C(k, 1) + 6C(k, 2) + 6C(k, 3). Therefore,

n∑
k=1

k3 =
n∑

k=1

(C(k, 1) + 6C(k, 2) + 6C(k, 3))

=
n∑

k=1

C(k, 1) + 6
n∑

k=1

C(k, 2) + 6
n∑

k=1

C(k, 3)



1.5. Combinatorial Identities 4

= C(n + 1, 2) + 6C(n + 1, 3) + 6C(n + 1, 4)

by Chu’s Theorem (Theorem 1.5.1)

=
n(n + 1)

2
+ 6

(n− 1)n(n + 1)

6
+ 6

(n− 2)(n− 1)n(n + 1)

24

=
n(n + 1)

2

(
1 + 2(n− 1) +

n2 − 3n + 2

2

)
=

n(n + 1)

2

(
4n− 2 + (n2 − 3n + 2)

2

)
=

(
n(n + 1)

2

) (
n2 + n

2

)
=

(
n(n + 1)

2

) (
n(n + 1)

2

)
=

(
n(n + 1)

2

)2

,

as expected.

Definition 1.5.3. Let Cn be the n×n Pascal matrix whose (i, j)-entry is binomial

coefficient C(i, j) for 1 ≤ i, j ≤ n.

Theorem 1.5.4. Alternating-Sign Theorem.

The Pascal matrix Cn is invertible; the (i, j)-entry of C−1
n is (−1)i+jC(i, j).

Theorem 1.5.5. If m and r are positive integers, the coefficient of C(k, r) in the

equation km =
∑m

r=1 ar,mC(k, r) is given by

ar,m

m∑
t=1

(−1)r+tC(r, t)tm.

Lemma 1.5.8. If n > 0, then
∑n

r=0(−1)rC(n, r) = 0.
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