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Chapter 1. Introduction to Probability
1.10. Important Inequalities—Proofs of Theorems
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Theorem 1.10.1

Theorem 1.10.1

Theorem 1.10.1. Let X be a random variable and letm ∈ N. Suppose
E [|X |m] exists. If k ∈ N and k ≤ m, then E (X k) exists.

Proof. We give a proof for X a continuous random variable and leave the
discrete case as an exercise. Let f be the probability density function for
X . We apply Theorem 1.8.1(a) with g(X ) = X k . We have∫ ∞

−∞
|g(x)|f (x) dx =

∫ ∞

−∞
|x |k f (x) dx

=

∫
|x |≤1

|x |k f (x) dx +

∫
|x |>1

|x |mf (x) dx

≤
∫ ∞

−∞
f (x) dx +

∫ ∞

−∞
|x |mf (x) dx since f (x) ≥ 0

≤
∫ ∞

−∞
f (x) dx +

∫ ∞

−∞
|x |mf (x) dx

≤ 1 + E [|X |m] < ∞ by hypothesis.
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Theorem 1.10.1

Theorem 1.10.1 (continued)

Theorem 1.10.1. Let X be a random variable and letm ∈ N. Suppose
E [|X |m] exists. If k ∈ N and k ≤ m, then E (X k) exists.

Proof (continued). So by Theorem 1.8.1(a),∫ ∞

−∞
g(x)f (x) dx =

∫ ∞

−∞
xk f (x) dx = E [X k ] < ∞

and so E [X k ] exists for all k ∈ N, k ≤ m, as claimed.
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Exercise 1.10.2. Markov’s Inequality

Exercise 1.10.2

Theorem 1.10.2. Markov’s Inequality.
Let u(X ) be a nonnegative function of random variable X . If E [u(X )]
exists then for every positive constant c , P(u(x) ≥ c) ≤ E [u(X )]/c .

Proof. We give a proof for X a continuous random variable and leave the
discrete case as an exercise. Let A = {x | u(x) ≥ c} and let f denote the
probability density function of X . Then

E [u(X )] =

∫ ∞

−∞
u(x)f (x) =

∫
A

u(x)f (x) dx +

∫
R\A

u(x)f (x) dx

(we need u and f to be measurable and we need Lebesgue integrals here
so that we know both of the two integrals on the right are defined). Since
each of the two integrals on the right are nonnegative then

E [u(X )] ≥
∫

A
u(x)f (x) dx ≥

∫
A

cf (x) dx

since u(x) ≥ c for x ∈ A.
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Exercise 1.10.2. Markov’s Inequality

Exercise 1.10.2 (continued)

Theorem 1.10.2. Markov’s Inequality.
Let u(X ) be a nonnegative function of random variable X . If E [u(X )]
exists then for every positive constant c , P(u(x) ≥ c) ≤ E [u(X )]/c .

Proof (continued). Now

P(X ∈ A) = P(u(x) ≥ c) =

∫
A

f (x) dx ≤ E [u(X )]

c
,

as claimed.
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Theorem 1.10.3. Chebyshev’s Inequality

Theorem 1.10.3

Theorem 1.10.3. Chebyshev’s Inequality.
Let X be a random variable where E (X 2) < ∞ (so that µ and σ2 are
define). Then for every k > 0

P(|X − µ| ≥ kσ) ≤ 1

k2
or P(|X − µ| < kσ) ≥ 1− 1

k2
.

Proof. Define u(X ) = (X − µ)2 and c = k2σ2. Then by Theorem 1.10.2,
Markiv’s Inequality,

P((X − µ)2 ≥ k2σ2) ≤ E [(X − µ)2]

k2σ2
=

σ2

k2σ2
=

1

k2
.

That is P(|X − µ| ≥ kσ) ≤ 1/k2, as claimed.
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Theorem 1.10.5. Jensen’s Inequality

Theorem 1.10.5

Theorem 1.10.5. Jensen’s Inequality.
If ϕ is convex on an open interval I and X is a random variable whose
support is contained in I and has finite expectation, then
ϕ(E [X ]) ≤ E [ϕ(X )]. If ϕ is strictly convex, then the inequality is strict
unless X is a constant random variable.

Proof. As stated above, we give a proof assuming that ϕ is twice
differentiable. Then by Taylor’s Theorem (see my online Calculus 2
[MATH 1920] notes on 10.9. Convergence of Taylor Series, Theorem 23)
we have for any u ∈ I that

ϕ(x) = ϕ(u) + ϕ′(u)(x − µ) +
ϕ′′(ζ)(x − µ)2

2!

for a given x ∈ I and for some ζ between x and µ. Since ϕ′′(ζ) ≥ 0 by
Theorem 1.10.4 then ϕ′′(ζ)(x − µ)2/2 ≥ 0 and hence
ϕ(x) ≥ ϕ(u) + ϕ′(u)(x − µ).
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Theorem 1.10.5. Jensen’s Inequality

Theorem 1.10.5 (continued)

Theorem 1.10.5. Jensen’s Inequality.
If ϕ is convex on an open interval I and X is a random variable whose
support is contained in I and has finite expectation, then
ϕ(E [X ]) ≤ E [ϕ(X )]. If ϕ is strictly convex, then the inequality is strict
unless X is a constant random variable.

Proof (continued). Therefore∫
X

ϕ(x)f (x) dx ≥
∫

X
ϕ(u)f (x) dx + ϕ′(u)

∫
X
(x − µ)f (x) dx

or

E [ϕ(X )] ≥ ϕ(u)

∫
X

f (x) dx + ϕ′(u)E [X − µ] = ϕ(u).

Since this holds for any x , u ∈ I , then we take u = E [X ] ∈ I to et
ϕ(E [X ]) ≤ E [ϕ(X )], as claimed. The inequality is strict if ϕ′′(x) > 0 for
all x ∈ I , provided X is not a constant.
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