Mathematical Statistics 1

Chapter 1. Introduction to Probability

 1.2. Sets—Proofs of Theorems

Table of contents

(1) Theorem 1.2.A. Distributive Laws
(2) Theorem 1.2.B. De Morgan's Laws

Theorem 1.2.A

Theorem 1.2.A. For any sets (events) A, B, and C we have $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ and $A \cup(C \cap C)=(A \cup B) \cap(A \cup C)$.

These are the distributive laws.
Proof. We establish each claim by showing the set on the left side is a subset of the set on the right side and conversely.

Theorem 1.2.A

Theorem 1.2.A. For any sets (events) A, B, and C we have $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ and $A \cup(C \cap C)=(A \cup B) \cap(A \cup C)$.

These are the distributive laws.
Proof. We establish each claim by showing the set on the left side is a subset of the set on the right side and conversely.
\square
$x \in B \cup C$. By Definition 1.2.3, $x \in B \cap C$ implies that either $x \in B$ or
$x \in C$.

Theorem 1.2.A

Theorem 1.2.A. For any sets (events) A, B, and C we have

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \text { and } A \cup(C \cap C)=(A \cup B) \cap(A \cup C)
$$

These are the distributive laws.
Proof. We establish each claim by showing the set on the left side is a subset of the set on the right side and conversely.

Let $x \in A \cap(C \cup C)$. Then by Definition 1.2.4, both $x \in A$ and $x \in B \cup C$. By Definition 1.2.3, $x \in B \cap C$ implies that either $x \in B$ or $x \in C$. If $x \in B$ then we have $x \in A \cap B$ and if $x \in C$ then we have $x \in A \cap C$ (by Definition 1.2.4). So we have that either $x \in A \cap B$ or $x \in A \cap C$. By Definition 1.2.3, this implies $x \in(A \cap B) \cup(A \cap C)$.

Theorem 1.2.A

Theorem 1.2.A. For any sets (events) A, B, and C we have $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ and $A \cup(C \cap C)=(A \cup B) \cap(A \cup C)$.

These are the distributive laws.
Proof. We establish each claim by showing the set on the left side is a subset of the set on the right side and conversely.

Let $x \in A \cap(C \cup C)$. Then by Definition 1.2.4, both $x \in A$ and $x \in B \cup C$. By Definition 1.2.3, $x \in B \cap C$ implies that either $x \in B$ or $x \in C$. If $x \in B$ then we have $x \in A \cap B$ and if $x \in C$ then we have $x \in A \cap C$ (by Definition 1.2.4). So we have that either $x \in A \cap B$ or $x \in A \cap C$. By Definition 1.2.3, this implies $x \in(A \cap B) \cup(A \cap C)$. Since x is an arbitrary element of $A \cap(B \cup C)$ then we have $A \cap(B \cup C) \subset(A \cap B) \cup(A \cap C)$ by Definition 1.2.2.

Theorem 1.2.A

Theorem 1.2.A. For any sets (events) A, B, and C we have $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ and $A \cup(C \cap C)=(A \cup B) \cap(A \cup C)$.

These are the distributive laws.
Proof. We establish each claim by showing the set on the left side is a subset of the set on the right side and conversely.

Let $x \in A \cap(C \cup C)$. Then by Definition 1.2.4, both $x \in A$ and $x \in B \cup C$. By Definition 1.2.3, $x \in B \cap C$ implies that either $x \in B$ or $x \in C$. If $x \in B$ then we have $x \in A \cap B$ and if $x \in C$ then we have $x \in A \cap C$ (by Definition 1.2.4). So we have that either $x \in A \cap B$ or $x \in A \cap C$. By Definition 1.2.3, this implies $x \in(A \cap B) \cup(A \cap C)$. Since x is an arbitrary element of $A \cap(B \cup C)$ then we have $A \cap(B \cup C) \subset(A \cap B) \cup(A \cap C)$ by Definition 1.2.2.

Theorem 1.2.A (continued 1)

Theorem 1.2.A. For any sets (events) A, B, and C we have $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ and $A \cup(C \cap C)=(A \cup B) \cap(A \cup C)$.

These are the distributive laws.
Proof (continued). Now let $y \in(A \cap B) \cup(A \cap C)$. Then by Definition 1.2.3, either $y \in A \cap B$ or $y \in A \cap C$. If $y \in A \cap B$ then by Definition 1.2.4, both $y \in A$ and $y \in B$. Therefore both $y \in A$ and $y \in B \cup C$ (since $y \in B$; by Definition 1.2.3). So, by Definition 1.2.3, $y \in A \cap(B \cup C)$.

Theorem 1.2.A (continued 1)

Theorem 1.2.A. For any sets (events) A, B, and C we have
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ and $A \cup(C \cap C)=(A \cup B) \cap(A \cup C)$.
These are the distributive laws.
Proof (continued). Now let $y \in(A \cap B) \cup(A \cap C)$. Then by Definition 1.2.3, either $y \in A \cap B$ or $y \in A \cap C$. If $y \in A \cap B$ then by Definition 1.2.4, both $y \in A$ and $y \in B$. Therefore both $y \in A$ and $y \in B \cup C$ (since $y \in B$; by Definition 1.2.3). So, by Definition 1.2.3, $y \in A \cap(B \cup C)$. $y \in A \cap C$ then by Definition 1.2.4, both $y \in A$ and $y \in C$. Therefore both $y \in A$ and $y \in B \cup C$ (since $y \in C$; by Definition 1.2.3). So by Definition 1.2.3, $y \in A \cap(B \cup C)$.

Theorem 1.2.A (continued 1)

Theorem 1.2.A. For any sets (events) A, B, and C we have
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ and $A \cup(C \cap C)=(A \cup B) \cap(A \cup C)$.
These are the distributive laws.
Proof (continued). Now let $y \in(A \cap B) \cup(A \cap C)$. Then by Definition 1.2.3, either $y \in A \cap B$ or $y \in A \cap C$. If $y \in A \cap B$ then by Definition 1.2.4, both $y \in A$ and $y \in B$. Therefore both $y \in A$ and $y \in B \cup C$ (since $y \in B$; by Definition 1.2.3). So, by Definition 1.2.3, $y \in A \cap(B \cup C)$. If $y \in A \cap C$ then by Definition 1.2.4, both $y \in A$ and $y \in C$. Therefore both $y \in A$ and $y \in B \cup C$ (since $y \in C$; by Definition 1.2.3). So by Definition 1.2.3, $y \in A \cap(B \cup C)$. Since y is an arbitrary element of $A \cap B) \cup(A \cap C)$ then $(A \cap B) \cup(A \cap C) \subset A \cap(B \cup C)$ by Definition 1.2.2. Therefore, by the definition of "equal" (also Definition 1.2.2), $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$, as claimed.

Theorem 1.2.A (continued 1)

Theorem 1.2.A. For any sets (events) A, B, and C we have
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ and $A \cup(C \cap C)=(A \cup B) \cap(A \cup C)$.
These are the distributive laws.
Proof (continued). Now let $y \in(A \cap B) \cup(A \cap C)$. Then by Definition 1.2.3, either $y \in A \cap B$ or $y \in A \cap C$. If $y \in A \cap B$ then by Definition 1.2.4, both $y \in A$ and $y \in B$. Therefore both $y \in A$ and $y \in B \cup C$ (since $y \in B$; by Definition 1.2.3). So, by Definition 1.2.3, $y \in A \cap(B \cup C)$. If $y \in A \cap C$ then by Definition 1.2.4, both $y \in A$ and $y \in C$. Therefore both $y \in A$ and $y \in B \cup C$ (since $y \in C$; by Definition 1.2.3). So by Definition 1.2.3, $y \in A \cap(B \cup C)$. Since y is an arbitrary element of $A \cap B) \cup(A \cap C)$ then $(A \cap B) \cup(A \cap C) \subset A \cap(B \cup C)$ by Definition 1.2.2. Therefore, by the definition of "equal" (also Definition 1.2.2), $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$, as claimed.

Theorem 1.2.A (continued 2)

Theorem 1.2.A. For any sets (events) A, B, and C we have $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ and $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.

Proof (continued). We now establish the second claim, but this time we go a little faster and reference the definitions less. Let $x \in A \cup(B \cap C)$. Then $x \in A$ or $x \in B \cap C$. If $x \in A$ then $x \in A \cup B$ and $x \in A \cup C$, and hence $x \in(A \cup B) \cap(A \cup C)$. If $x \in B \cap C$ then $x \in B$ and $x \in C$. So $x \in A \cup B$ and $x \in A \cup C$, so that $x \in(A \cup B) \cap(A \cup C)$. Since x is an arbitrary element of $A \cup(B \cap C)$ then $A \cup(B \cap C) \subset(A \cup B) \cap(A \cap C)$.
Let $y \in(A \cup B) \cap(A \cup C)$. Then both $y \in A \cup B$ and $y \in A \cup C$; that is, BOTH $y \in A$ or $y \in B$ AND $y \in A$ or $y \in C$. If $y \in A$ then $y \in A \cup(B \cap C)$. If $y \notin A$ then we must have both $y \in B$ and $y \in C$, that is $y \in B \cap C$, and hence $y \in B \cap C$. So if $y \notin A$ then $y \in A \cup(B \cap C)$. Since y is an arbitrary element of $(A \cup B) \cap(A \cup C)$ then $(A \cup B) \cap(A \cup C) \subset A \cup(B \cap C)$. Therefore, $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$, as claimed

Theorem 1.2.A (continued 2)

Theorem 1.2.A. For any sets (events) A, B, and C we have $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ and $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.

Proof (continued). We now establish the second claim, but this time we go a little faster and reference the definitions less. Let $x \in A \cup(B \cap C)$. Then $x \in A$ or $x \in B \cap C$. If $x \in A$ then $x \in A \cup B$ and $x \in A \cup C$, and hence $x \in(A \cup B) \cap(A \cup C)$. If $x \in B \cap C$ then $x \in B$ and $x \in C$. So $x \in A \cup B$ and $x \in A \cup C$, so that $x \in(A \cup B) \cap(A \cup C)$. Since x is an arbitrary element of $A \cup(B \cap C)$ then $A \cup(B \cap C) \subset(A \cup B) \cap(A \cap C)$. Let $y \in(A \cup B) \cap(A \cup C)$. Then both $y \in A \cup B$ and $y \in A \cup C$; that is, BOTH $y \in A$ or $y \in B$ AND $y \in A$ or $y \in C$. If $y \in A$ then $y \in A \cup(B \cap C)$. If $y \notin A$ then we must have both $y \in B$ and $y \in C$, that is $y \in B \cap C$, and hence $y \in B \cap C$. So if $y \notin A$ then $y \in A \cup(B \cap C)$. Since y is an arbitrary element of $(A \cup B) \cap(A \cup C)$ then $(A \cup B) \cap(A \cup C) \subset A \cup(B \cap C)$. Therefore, $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$, as claimed.

Theorem 1.2.B

Theorem 1.2.B. De Morgan's Laws. For any two sets (events) A and B, we have

$$
(A \cap B)^{c}=A^{c} \cup B^{c} \text { and }(A \cup B)^{c}=A^{c} \cap B^{c} .
$$

Proof (Exercise 1.2.4(b). We establish each claim by showing the set on the left side is a subset of the set on the right side and conversely.

Theorem 1.2.B

Theorem 1.2.B. De Morgan's Laws. For any two sets (events) A and B, we have

$$
(A \cap B)^{c}=A^{c} \cup B^{c} \text { and }(A \cup B)^{c}=A^{c} \cap B^{c} .
$$

Proof (Exercise 1.2.4(b). We establish each claim by showing the set on the left side is a subset of the set on the right side and conversely.

Let $x \in(A \cap B)^{c}$. Then $x \notin A \cap B$. Since $A \cap B$ consists of elements in both A and B by Definition 1.2.4, so x is not in both A and B; that is, either x is not in A or x is not in B. Hence either $x \in A^{c}$ or $x \in B^{c}$; that is, $x \in A^{c} \cup B^{c}$. Since x is an arbitrary element of $(A \cap B)^{c}$, then $(A \cap B)^{c} \subset A^{c} \cup B^{c}$

Theorem 1.2.B

Theorem 1.2.B. De Morgan's Laws. For any two sets (events) A and B, we have

$$
(A \cap B)^{c}=A^{c} \cup B^{c} \text { and }(A \cup B)^{c}=A^{c} \cap B^{c} .
$$

Proof (Exercise 1.2.4(b). We establish each claim by showing the set on the left side is a subset of the set on the right side and conversely.

Let $x \in(A \cap B)^{c}$. Then $x \notin A \cap B$. Since $A \cap B$ consists of elements in both A and B by Definition 1.2.4, so x is not in both A and B; that is, either x is not in A or x is not in B. Hence either $x \in A^{c}$ or $x \in B^{c}$; that is, $x \in A^{c} \cup B^{c}$. Since x is an arbitrary element of $(A \cap B)^{c}$, then $(A \cap B)^{c} \subset A^{c} \cup B^{c}$. Let $y \in A^{c} \cup B^{c}$. Then either $y \in A^{c}$ or $y \in B^{c}$ by Definition 1.2.3. Since y is an arbitrary element of $A^{c} \cap B^{c}$, then $A^{c} \cup B^{c} \subset(A \cap B)^{c}$. Therefore, by the definition of "equal" (Definition 1.2.2), $(A \cap B)^{c}=A^{c} \cup B^{c}$, as claimed.

Theorem 1.2.B

Theorem 1.2.B. De Morgan's Laws. For any two sets (events) A and B, we have

$$
(A \cap B)^{c}=A^{c} \cup B^{c} \text { and }(A \cup B)^{c}=A^{c} \cap B^{c} .
$$

Proof (Exercise 1.2.4(b). We establish each claim by showing the set on the left side is a subset of the set on the right side and conversely.

Let $x \in(A \cap B)^{c}$. Then $x \notin A \cap B$. Since $A \cap B$ consists of elements in both A and B by Definition 1.2.4, so x is not in both A and B; that is, either x is not in A or x is not in B. Hence either $x \in A^{c}$ or $x \in B^{c}$; that is, $x \in A^{c} \cup B^{c}$. Since x is an arbitrary element of $(A \cap B)^{c}$, then $(A \cap B)^{c} \subset A^{c} \cup B^{c}$. Let $y \in A^{c} \cup B^{c}$. Then either $y \in A^{c}$ or $y \in B^{c}$ by Definition 1.2.3. Since y is an arbitrary element of $A^{c} \cap B^{c}$, then $A^{c} \cup B^{c} \subset(A \cap B)^{c}$. Therefore, by the definition of "equal" (Definition 1.2.2), $(A \cap B)^{c}=A^{c} \cup B^{c}$, as claimed.

Theorem 1.2.B (continued)

Theorem 1.2.B. De Morgan's Laws. For any two sets (events) A and B, we have

$$
(A \cap B)^{c}=A^{c} \cup B^{c} \text { and }(A \cup B)^{c}=A^{c} \cap B^{c} .
$$

Proof (continued). Let $x \in(A \cup B)^{c}$. Then $x \notin A \cup B$. Since $A \cup B$ consists of all elements in either A or B by Definition 1.2.3, then x is in neither A nor B. That is, both $x \in A^{c}$ and $x \in B^{c}$. So, by Definition 1.2.4, $x \in A^{c} \cap B^{c}$. Since x is an arbitrary element of $(A \cup B)^{c}$ then $(A \cup B)^{c} \subset A^{c} \cap B^{c}$

Theorem 1.2.B (continued)

Theorem 1.2.B. De Morgan's Laws. For any two sets (events) A and B, we have

$$
(A \cap B)^{c}=A^{c} \cup B^{c} \text { and }(A \cup B)^{c}=A^{c} \cap B^{c} .
$$

Proof (continued). Let $x \in(A \cup B)^{c}$. Then $x \notin A \cup B$. Since $A \cup B$ consists of all elements in either A or B by Definition 1.2.3, then x is in neither A nor B. That is, both $x \in A^{c}$ and $x \in B^{c}$. So, by Definition 1.2.4, $x \in A^{c} \cap B^{c}$. Since x is an arbitrary element of $(A \cup B)^{c}$ then $(A \cup B)^{c} \subset A^{c} \cap B^{c}$. Now let $y \in A^{c} \cap B^{c}$. Then by Definition 1.2 .4 both $y \in A^{c}$ and $y \in B^{c}$. So both $y \notin A$ and $y \notin B$. Hence $y \notin A \cup B$ by Definition 1.2.3. That is, $y \in(A \cup B)^{c}$. Since y is an arbitrary element of $A^{c} \cap B^{c}$ then $A^{c} \cap B^{c} \subset(A \cup B)^{c}$. Therefore, by the definition of "equal" (Definition 1.2.2), $(A \cup B)^{c}=A^{c} \cap B^{c}$, as claimed.

Theorem 1.2.B (continued)

Theorem 1.2.B. De Morgan's Laws. For any two sets (events) A and B, we have

$$
(A \cap B)^{c}=A^{c} \cup B^{c} \text { and }(A \cup B)^{c}=A^{c} \cap B^{c} .
$$

Proof (continued). Let $x \in(A \cup B)^{c}$. Then $x \notin A \cup B$. Since $A \cup B$ consists of all elements in either A or B by Definition 1.2.3, then x is in neither A nor B. That is, both $x \in A^{c}$ and $x \in B^{c}$. So, by Definition 1.2.4, $x \in A^{c} \cap B^{c}$. Since x is an arbitrary element of $(A \cup B)^{c}$ then $(A \cup B)^{c} \subset A^{c} \cap B^{c}$. Now let $y \in A^{c} \cap B^{c}$. Then by Definition 1.2.4 both $y \in A^{c}$ and $y \in B^{c}$. So both $y \notin A$ and $y \notin B$. Hence $y \notin A \cup B$ by Definition 1.2.3. That is, $y \in(A \cup B)^{c}$. Since y is an arbitrary element of $A^{c} \cap B^{c}$ then $A^{c} \cap B^{c} \subset(A \cup B)^{c}$. Therefore, by the definition of "equal" (Definition 1.2.2), $(A \cup B)^{c}=A^{c} \cap B^{c}$, as claimed.

