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Theorem 1.3.2

Theorem 1.3.2

Theorem 1.3.2. The probability of the null set is zero; that is, P(&) = 0.

Proof. With A = @ we have A° =, so by Theorem 1.3.1 we have

P(@)=1-P(C)=1-1=0,

as claimed.

Mathematical Statistics 1

September 14, 2019 4 /17

Theorem 1.3.1

Theorem 1.3.1

Theorem 1.3.1. For each event A € B, P(A) =1 — P(A°).

Proof. We have C = AU A°. So by Definition 1.3.1,

1= P(C) = P(AUA%) = P(A) + P(A°),

so that P(A) =1 — P(A°),

as claimed.
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Theorem 1.3.3

September 14, 2019

Theorem 1.3.3. If A and B are events such that A C B, then
P(A) < P(B) (in measure theory, this is called monotonicity).

3/17

Proof. We have B = A (A° N B), so by Definition 1.3.1(3) (countable
additivity) P(B) = P(A) 4+ P(A° N B) and by Definition 1.3.1(1),

P(A°N B) > 0 so that

P(B) = P(A)+ P(A“N B) > P(A),

or P(A) < P(B), as claimed.
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Theorem 1.3.4 Theorem 1.3.5

Theorem 1.3.5. If A and B are events in C, then
P(AUB) = P(A)+ P(B) — P(AN B).

Proof. We have AUB =AU (AN B)and B=(ANB)U(A°NB).
Hogg, McKean, and Craig justify these set equalities with the following

Venn diagrams:
Proof. Since @ C A C C then by Theorem 1.3.2, Theorem 1.3.3, and

Definition 1.3.1(2), @ @

Theorem 1.3.4. For each event A € B we have 0 < P(A) < 1.

A B
0=P(@) < P(A) <P =1, AUB = AU(A°NB) A =(ANB*)U(ANB)
or 0 < P(A) < 1, as claimed. 0 By Definition 1.3.1(3) (countable additivity),

P(AUB) = P(A) + P(A“Nn B) and P(B) = P(AN B) + P(A°N B). So
(from the second equation) P(A° N B) = P(B) — P(AN B) and (from the
first equation)

P(AUB) =P(A)+ (P(B)— P(ANnB)) = P(A) + P(B) = P(ANn B),

as claimed. O
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Exercise 1.3.4 Exercise 1.3.6

Exercise 1.3.6. If the sample space is C = {c | —oc < ¢ < oo} and if
C C Cis a set for which the integral [ el dx exists, show that this set
function is not a probability set function. What constant do we multiply
Exercise 1.3.4. If the sample space is C = C; U G, and if P(C;) = 0.8 the integral by to make it a probability function?

and P(G) =05, find P(G1 N G). Solution. With C = C = R we have

Solution. With A = C; and B = G, we have from Theorem 1.3.4 that /Re—lx dx = / e " dx
P(C=P(GLUG)=P(G)+P(G)-P(G1NG) = 2/ e X dx since e ! is an even function
0
orl= (08) + (05) — P(Cl N C2) or P(Cl N C2) =0.3]| L] - 9 / e~ dx since x > 0 here
J0
b
= 2 lim </ e dx) =2 lim (—e_x|8>
b—oo 0 b—oo
= 2 lim (—eP+1)=20+1)=2.
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Exercise 1.3.6

Exercise 1.3.6 (continued 1)

Solution (continued). So | e Xl dx is not a probability set function
because applying it to C = C does not yield a probability of a (in violation
of Definition 1.3.1(2)). If we define P(C) = % [- =X dx then we have
P(|calC) =1 and Definition 1.3.1(2) is then satisfied. We should feel
comfortable with the claim that P(@) = [ e~ dx = 0 (though this is
never technically defined for Riemann integrals), so that Definition
1.3.1(1) is satisfied.

But justifying Definition 1.3.1(3), countable additivity, is more
complicated. If the integral is a Riemann integral then there are a lot of
restrictions on the collection B of events. If the integral is a Lebesgue
integral then the collection of events B is the o-field (or o-algebra) of
Lebesgue measurable sets, which includes lots of sets of real numbers
(probably every subset of R you can think of. .. certainly every subset that
I can think of...almost...).
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Exercise 1.3.9

Exercise 1.3.9

Exercise 1.3.9. Determine the probability of being dealt a full house, i.e.,
three-of-a-kind and two-of-a-kind.

Solution. The suit of the three-of-a-kind can be chosen in () = 13 ways
and the suit of the two-of-a-kind can then be chose in () = 12 ways.
The three cards in the three-of-a-kind can then be chosen in (3) ways and
the two cards in the two-of-a-kind can then be chosen in (3) ways. So the
probability of being dealt a full house is

(D7) GE)E6)

(13)(12)(4)(6) _ 4 00144,

(552) 2,598,960
L]
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Exercise 1.3.6

Exercise 1.3.6 (continued 2)

Exercise 1.3.6. If the sample space is C = {c | —oc < ¢ < oo} and if

C C Cis a set for which the integral [ el dx exists, show that this set
function is not a probability set function. What constant do we multiply
the integral by to make it a probability function?

Solution (continued). One of the properties of the Lebesgue integral is
countable additivity:

[e.9]

Lo =2 Ue)

1 n=1

so that P (U2, A,) = > 021 P(An), and Definition 1.3.1(3) is satisfied.
For more details on properties of Lebesgue integrals, see my online notes
for Real Analysis 1. O
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Theorem 1.3.6. Continuity of the Probability Functions

Theorem 1.3.6

Theorem 1.3.6. Continuity of the Probability Functions.
Let {C,} be a nondecreasing sequence of events. Then

lim P(C,) = P( lim Cn) = P(U2,Cy).

n—oo n—oo

Let {Ch} be a nonincreasing sequence of sets. Then

lim P(C,) = P( lim Cn) — P(N2,Cp).

n—oo n—oo

Proof. First, we consider the proof for a nondecreasing sequence.

Define Ry = C; and R, = G, N C5_, for n > 2. Notice that since the
events are in a o-field then R, is also an event. Then R,, N R, = & for
m # n (since, with m < n say, Ry, C Gy, but R, C CS_; and since the
sequence is nondecreasing then C,, C C,_1, here m < n—1, and so
CmNCS_, =0).
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Theorem 1.3.6 (continued 1)

Proof (continued). Also, U2 R, = U, G, since R, C C, for n > 1 and
any x € U2, Gy, is in some Cyy for a smallest value of N € N so that

x € Ry = Cy N Cfy_q (since N is the smallest such value then x & Xy_1
and so x € C§,_,; we need Xy = @ here). Since R, = G, N CS_; then

Rn O] C,;:_l - (Cn N CI;:—].) O] Cn_]_
or RpJ Ch1 = C, and so by Definition 1.3.1(3), countable additivity,
P(R, W Ch_1) = P(Rn) + P(Ch1) = P(Gp)

or P(R,) = P(Cy) — P(Cs—1). So for any N € N we have

N N
> P(Ra) = (P(Ca) = P(Ca-1)) = P(Cn) — P(Go) = P(Cw).
n=1 n=1
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Theorem 1.3.7. Boole's Inequality/Countable Subadditivity

Theorem 1.3.7

Theorem 1.3.7. Boole's Inequality/Countable Subadditivity.
Let {C,} be an arbitrary sequence of events. Then

P(UZ21Cy) < i P(C).
n=1

Proof. Define D, = U?_; C;. Then {D,} is an increasing sequence of
events that converge to Up2; C,. Also D; = D;_; U G for all j > 2. So by
Theorem 1.3.5,

P(Dj) = P(Dj-1U G) < P(Dj-1) + P(G)),

or P(D}) ~ P(Dj1) < P(G)).

Mathematical Statistics 1 September 14, 2019 16 / 17

Theorem 1.3.6 (continued 2)

Proof (continued). ...

N N

ST P(Ra) =Y (P(C) = P(Ca-1)) = P(Ci) — P(Co) = P(Cn).

n=1 n=1

So

P(Iim Cn> = P(UZ,G) = P(U4R,)

n—oo

= Z P(R,) by Definition 1.3.1(3), countable additivity
n=1

N
—  lim (ZP(R,J) = lim P(Cy) = lim P(Cy),
n=1

N—oo N—oo n—oo

as claimed. 0
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Theorem 1.3.7. Boole's Inequality/Countable Subadditivity

Theorem 1.3.7 (continued)

Theorem 1.3.7. Boole's Inequality/Countable Subadditivity.
Let {C,} be an arbitrary sequence of events. Then

PULC) < S PG,
n=1

Proof (continued). So by Theorem 1.3.1,
P(UZ1Cn) = (U21Dc) = n“m P(Dn)

n [ee]
= lim | P(D) + D (P(D)) ~ P(D;-1)) | < Tim | P(G) + 3 P(C)
j=2 Jj=2
= Z P(Cn),
n=1
as claimed. O
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