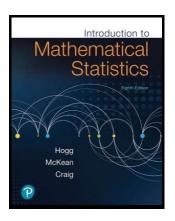
Mathematical Statistics 1

Chapter 1. Introduction to Probability

1.3. The Probability Set Function—Proofs of Theorems



Mathematical Statistics 1

September 14, 2019

Mathematical Statistics 1

September 14, 2019 3 / 17

Theorem 1.3.2

Theorem 1.3.2. The probability of the null set is zero; that is, $P(\emptyset) = 0$.

Proof. With $A = \emptyset$ we have $A^c = \mathcal{C}$, so by Theorem 1.3.1 we have

$$P(\emptyset) = 1 - P(C) = 1 - 1 = 0,$$

as claimed.

Theorem 1.3.1

Theorem 1.3.1. For each event $A \in \mathcal{B}$, $P(A) = 1 - P(A^c)$.

Proof. We have $C = A \cup A^c$. So by Definition 1.3.1,

$$1 = P(\mathcal{C}) = P(A \cup A^c) = P(A) + P(A^c),$$

so that $P(A) = 1 - P(A^c)$, as claimed.

Theorem 1.3.3

Theorem 1.3.3. If A and B are events such that $A \subset B$, then P(A) < P(B) (in measure theory, this is called *monotonicity*).

Proof. We have $B = A \cup (A^c \cap B)$, so by Definition 1.3.1(3) (countable additivity) $P(B) = P(A) + P(A^c \cap B)$ and by Definition 1.3.1(1), $P(A^c \cap B) \ge 0$ so that

$$P(B) = P(A) + P(A^c \cap B) \ge P(A),$$

or $P(A) \leq P(B)$, as claimed.

Mathematical Statistics 1 September 14, 2019 Mathematical Statistics 1 September 14, 2019 5 / 17

Theorem 1.3.4

Theorem 1.3.4. For each event $A \in \mathcal{B}$ we have $0 \le P(A) \le 1$.

Proof. Since $\varnothing \subset A \subset \mathcal{C}$ then by Theorem 1.3.2, Theorem 1.3.3, and Definition 1.3.1(2),

$$0 = P(\emptyset) \le P(A) \le P(C) = 1,$$

or $0 \le P(A) \le 1$, as claimed.

Mathematical Statistics 1

September 14, 2019

Exercise 1.3.4

Exercise 1.3.4. If the sample space is $C = C_1 \cup C_2$ and if $P(C_1) = 0.8$ and $P(C_2) = 0.5$, find $P(C_1 \cap C_2)$.

Solution. With $A = C_1$ and $B = C_2$, we have from Theorem 1.3.4 that

$$P(C = P(C_1 \cup C_2) = P(C_1) + P(C_2) - P(C_1 \cap C_2)$$

or
$$1 = (0.8) + (0.5) - P(C_1 \cap C_2)$$
 or $P(C_1 \cap C_2) = 0.3$.

Theorem 1.3.5

Theorem 1.3.5. If A and B are events in C, then $P(A \cup B) = P(A) + P(B) - P(A \cap B).$

Proof. We have $A \cup B = A \cup (A^c \cap B)$ and $B = (A \cap B) \cup (A^c \cap B)$. Hogg, McKean, and Craig justify these set equalities with the following Venn diagrams:

 $A = (A \cap B^c) \cup (A \cap B)$

By Definition 1.3.1(3) (countable additivity), $P(A \cup B) = P(A) + P(A^c \cap B)$ and $P(B) = P(A \cap B) + P(A^c \cap B)$. So (from the second equation) $P(A^c \cap B) = P(B) - P(A \cap B)$ and (from the first equation)

$$P(A \cup B) = P(A) + (P(B) - P(A \cap B)) = P(A) + P(B) = P(A \cap B),$$
 as claimed.

Exercise 1.3.6

Exercise 1.3.6. If the sample space is $C = \{c \mid -\infty < c < \infty\}$ and if $C \subset C$ is a set for which the integral $\int_C e^{-|x|} dx$ exists, show that this set function is not a probability set function. What constant do we multiply the integral by to make it a probability function?

Solution. With $C = \mathcal{C} = \mathbb{R}$ we have

$$\int_{\mathbb{R}} e^{-|x|} dx = \int_{-\infty}^{\infty} e^{-|x|} dx$$

$$= 2 \int_{0}^{\infty} e^{-|x|} dx \text{ since } e^{-|x|} \text{ is an even function}$$

$$= 2 \int_{0}^{\infty} e^{-x} dx \text{ since } x \ge 0 \text{ here}$$

$$= 2 \lim_{b \to \infty} \left(\int_{0}^{b} e^{-x} dx \right) = 2 \lim_{b \to \infty} \left(-e^{-x} \Big|_{0}^{b} \right)$$

$$= 2 \lim_{b \to \infty} (-e^{-b} + 1) = 2(0 + 1) = 2.$$

September 14, 2019 7 / 17

Exercise 1.3.6 (continued 1)

Solution (continued). So $\int_C e^{-|x|} dx$ is not a probability set function because applying it to $C=\widetilde{\mathcal{C}}$ does not yield a probability of a (in violation of Definition 1.3.1(2)). If we define $P(C) = \frac{1}{2} \int_C e^{-|x|} dx$ then we have P(|calC| = 1 and Definition 1.3.1(2) is then satisfied. We should feelcomfortable with the claim that $P(\emptyset) = \int_{\emptyset} e^{-|x|} dx = 0$ (though this is never technically defined for Riemann integrals), so that Definition 1.3.1(1) is satisfied.

But justifying Definition 1.3.1(3), countable additivity, is more complicated. If the integral is a Riemann integral then there are a lot of restrictions on the collection \mathcal{B} of events. If the integral is a Lebesgue integral then the collection of events \mathcal{B} is the σ -field (or σ -algebra) of Lebesgue measurable sets, which includes lots of sets of real numbers (probably every subset of \mathbb{R} you can think of. . . certainly every subset that I can think of...almost...).

Mathematical Statistics 1

Exercise 1.3.9

Exercise 1.3.9. Determine the probability of being dealt a full house, i.e., three-of-a-kind and two-of-a-kind.

Solution. The suit of the three-of-a-kind can be chosen in $\binom{13}{1} = 13$ ways and the suit of the two-of-a-kind can then be chose in $\binom{12}{1} = 12$ ways. The three cards in the three-of-a-kind can then be chosen in $\binom{4}{3}$ ways and the two cards in the two-of-a-kind can then be chosen in $\binom{4}{2}$ ways. So the probability of being dealt a full house is

$$\frac{\binom{13}{1}\binom{12}{1}\binom{4}{3}\binom{4}{2}}{\binom{52}{5}} = \frac{(13)(12)(4)(6)}{2,598,960} \approx 0.00144.$$

Exercise 1.3.6 (continued 2)

Exercise 1.3.6. If the sample space is $C = \{c \mid -\infty < c < \infty\}$ and if $C \subset C$ is a set for which the integral $\int_C e^{-|x|} dx$ exists, show that this set function is not a probability set function. What constant do we multiply the integral by to make it a probability function?

Solution (continued). One of the properties of the Lebesgue integral is countable additivity:

$$\int_{\bigcup_{n=1}^{\infty} A_n} e^{-|x|} = \sum_{n=1}^{\infty} \left(\int_{A_n} e^{-|x|} \right)$$

so that $P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n)$, and Definition 1.3.1(3) is satisfied. For more details on properties of Lebesgue integrals, see my online notes for Real Analysis 1.

Mathematical Statistics 1

Theorem 1.3.6

Theorem 1.3.6. Continuity of the Probability Functions.

Let $\{C_n\}$ be a nondecreasing sequence of events. Then

$$\lim_{n\to\infty} P(C_n) = P\left(\lim_{n\to\infty} C_n\right) = P\left(\bigcup_{n=1}^{\infty} C_n\right).$$

Let $\{C_n\}$ be a nonincreasing sequence of sets. Then

$$\lim_{n\to\infty} P(C_n) = P\left(\lim_{n\to\infty} C_n\right) = P\left(\bigcap_{n=1}^{\infty} C_n\right).$$

Proof. First, we consider the proof for a nondecreasing sequence.

Define $R_1 = C_1$ and $R_n = C_n \cap C_{n-1}^c$, for $n \ge 2$. Notice that since the events are in a σ -field then R_n is also an event. Then $R_m \cap R_n = \emptyset$ for $m \neq n$ (since, with m < n say, $R_m \subset C_m$ but $R_n \subset C_{n-1}^c$ and since the sequence is nondecreasing then $C_m \subset C_{n-1}$, here $m \leq n-1$, and so $C_m \cap C_{n-1}^c = \varnothing$).

September 14, 2019

September 14, 2019

Theorem 1.3.6 (continued 1)

Proof (continued). Also, $\bigcup_{n=1}^{\infty} R_n = \bigcup_{n=1}^{\infty} C_n$ since $R_n \subset C_n$ for $n \ge 1$ and any $x \in \bigcup_{n=1}^{\infty} C_n$ is in some C_N for a smallest value of $N \in \mathbb{N}$ so that $x \in R_N = C_N \cap C_{N-1}^c$ (since N is the smallest such value then $x \notin X_{N-1}$ and so $x \in C_{N-1}^c$; we need $X_0 = \emptyset$ here). Since $R_n = C_n \cap C_{n-1}^c$ then

$$R_n \cup C_{n-1}^c = (C_n \cap C_{n-1}^c) \cup C_{n-1}$$

or $R_n \cup C_{n-1} = C_n$ and so by Definition 1.3.1(3), countable additivity,

$$P(R_n \cup C_{n-1}) = P(R_n) + P(C_{n-1}) = P(C_n)$$

or $P(R_n) = P(C_n) - P(C_{n-1})$. So for any $N \in \mathbb{N}$ we have

$$\sum_{n=1}^{N} P(R_n) = \sum_{n=1}^{N} (P(C_n) - P(C_{n-1})) = P(C_N) - P(C_0) = P(C_N).$$

Mathematical Statistics 1

September 14, 2019

Theorem 1.3.7

Theorem 1.3.7. Boole's Inequality/Countable Subadditivity.

Let $\{C_n\}$ be an arbitrary sequence of events. Then

$$P\left(\bigcup_{n=1}^{\infty}C_{n}\right)\leq\sum_{n=1}^{\infty}P(C_{n}).$$

Proof. Define $D_n = \bigcup_{i=1}^n C_i$. Then $\{D_n\}$ is an increasing sequence of events that converge to $\bigcup_{n=1}^{\infty} C_n$. Also $D_i = D_{i-1} \cup C_j$ for all $j \geq 2$. So by Theorem 1.3.5.

$$P(D_j) = P(D_{j-1} \cup C_j) \le P(D_{j-1}) + P(C_j),$$

or $P(D_i) - P(D_{i-1}) < P(C_i)$.

Theorem 1.3.6 (continued 2)

Proof (continued). ...

$$\sum_{n=1}^{N} P(R_n) = \sum_{n=1}^{N} (P(C_n) - P(C_{n-1})) = P(C_N) - P(C_0) = P(C_N).$$

So

$$P\left(\lim_{n\to\infty}C_n\right) = P\left(\cup_{n=1}^{\infty}C_n\right) = P\left(\cup_{n=1}^{\infty}R_n\right)$$

$$= \sum_{n=1}^{\infty}P(R_n) \text{ by Definition 1.3.1(3), countable additivity}$$

$$= \lim_{N\to\infty}\left(\sum_{n=1}^{N}P(R_n)\right) = \lim_{N\to\infty}P(C_N) = \lim_{n\to\infty}P(C_n),$$

as claimed.

Mathematical Statistics 1

September 14, 2019

Theorem 1.3.7 (continued)

Theorem 1.3.7. Boole's Inequality/Countable Subadditivity.

Let $\{C_n\}$ be an arbitrary sequence of events. Then

$$P\left(\bigcup_{n=1}^{\infty}C_{n}\right)\leq\sum_{n=1}^{\infty}P(C_{n}).$$

Proof (continued). So by Theorem 1.3.1,

$$P\left(\bigcup_{i=1}^{\infty}C_{n}\right)=\left(\bigcup_{i=1}^{\infty}D_{c}\right)=\lim_{n\to\infty}P(D_{n})$$

$$= \lim_{n \to \infty} \left(P(D_1) + \sum_{j=2}^{n} (P(D_j) - P(D_{j-1})) \right) \le \lim_{n \to \infty} \left(P(C_1) + \sum_{j=2}^{\infty} P(C_j) \right)$$
$$= \sum_{n=1}^{\infty} P(C_n),$$

as claimed.

September 14, 2019 Mathematical Statistics 1