Mathematical Statistics 1

Chapter 1. Introduction to Probability

1.3. The Probability Set Function-Proofs of Theorems

Table of contents

(1) Theorem 1.3.1
(2) Theorem 1.3.2
(3) Theorem 1.3.3
(4) Theorem 1.3.4
(5) Theorem 1.3.5
(6) Exercise 1.3.4
(7) Exercise 1.3.6
(8) Exercise 1.3.9
(9) Theorem 1.3.6. Continuity of the Probability Functions
(10) Theorem 1.3.7. Boole's Inequality/Countable Subadditivity

Theorem 1.3.1

Theorem 1.3.1. For each event $A \in \mathcal{B}, P(A)=1-P\left(A^{c}\right)$.

Proof. We have $\mathcal{C}=A \cup A^{c}$. So by Definition 1.3.1,

$$
1=P(C)=P\left(A \cup A^{c}\right)=P(A)+P\left(A^{c}\right),
$$

so that $P(A)=1-P\left(A^{c}\right)$, as claimed.

Theorem 1.3.1

Theorem 1.3.1. For each event $A \in \mathcal{B}, P(A)=1-P\left(A^{c}\right)$.

Proof. We have $\mathcal{C}=A \uplus A^{c}$. So by Definition 1.3.1,

$$
1=P(\mathcal{C})=P\left(A \cup A^{c}\right)=P(A)+P\left(A^{c}\right),
$$

so that $P(A)=1-P\left(A^{c}\right)$, as claimed.

Theorem 1.3.2

Theorem 1.3.2. The probability of the null set is zero; that is, $P(\varnothing)=0$.

Proof. With $A=\varnothing$ we have $A^{c}=\mathcal{C}$, so by Theorem 1.3 .1 we have

$$
P(\varnothing)=1-P(C)=1-1=0,
$$

as claimed.

Theorem 1.3.2

Theorem 1.3.2. The probability of the null set is zero; that is, $P(\varnothing)=0$.

Proof. With $A=\varnothing$ we have $A^{c}=\mathcal{C}$, so by Theorem 1.3 .1 we have

$$
P(\varnothing)=1-P(\mathcal{C})=1-1=0,
$$

as claimed.

Theorem 1.3.3

Theorem 1.3.3. If A and B are events such that $A \subset B$, then $P(A) \leq P(B)$ (in measure theory, this is called monotonicity).

Proof. We have $B=A \cup\left(A^{c} \cap B\right)$, so by Definition 1.3.1(3) (countable additivity) $P(B)=P(A)+P\left(A^{c} \cap B\right)$ and by Definition 1.3.1(1), $P\left(A^{c} \cap B\right) \geq 0$ so that

$$
P(B)=P(A)+P\left(A^{c} \cap B\right) \geq P(A)
$$

or $P(A) \leq P(B)$, as claimed.

Theorem 1.3.3

Theorem 1.3.3. If A and B are events such that $A \subset B$, then $P(A) \leq P(B)$ (in measure theory, this is called monotonicity).

Proof. We have $B=A \cup\left(A^{c} \cap B\right)$, so by Definition 1.3.1(3) (countable additivity) $P(B)=P(A)+P\left(A^{c} \cap B\right)$ and by Definition 1.3.1(1), $P\left(A^{c} \cap B\right) \geq 0$ so that

$$
P(B)=P(A)+P\left(A^{c} \cap B\right) \geq P(A)
$$

or $P(A) \leq P(B)$, as claimed.

Theorem 1.3.4

Theorem 1.3.4. For each event $A \in \mathcal{B}$ we have $0 \leq P(A) \leq 1$.

Proof. Since $\varnothing \subset A \subset \mathcal{C}$ then by Theorem 1.3.2, Theorem 1.3.3, and Definition 1.3.1(2),

$$
0=P(\varnothing) \leq P(A) \leq P(\mathcal{C})=1,
$$

or $0 \leq P(A) \leq 1$, as claimed.

Theorem 1.3.4

Theorem 1.3.4. For each event $A \in \mathcal{B}$ we have $0 \leq P(A) \leq 1$.
Proof. Since $\varnothing \subset A \subset \mathcal{C}$ then by Theorem 1.3.2, Theorem 1.3.3, and Definition 1.3.1(2),

$$
0=P(\varnothing) \leq P(A) \leq P(\mathcal{C})=1,
$$

or $0 \leq P(A) \leq 1$, as claimed.

Theorem 1.3.5

Theorem 1.3.5. If A and B are events in \mathcal{C}, then $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.

Proof. We have $A \cup B=A \cup\left(A^{c} \cap B\right)$ and $B=(A \cap B) \cup\left(A^{c} \cap B\right)$. Hogg, McKean, and Craig justify these set equalities with the following Venn diagrams:

Theorem 1.3.5

Theorem 1.3.5. If A and B are events in \mathcal{C}, then $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.

Proof. We have $A \cup B=A \cup\left(A^{c} \cap B\right)$ and $B=(A \cap B) \cup\left(A^{c} \cap B\right)$. Hogg, McKean, and Craig justify these set equalities with the following Venn diagrams:

Theorem 1.3.5

Theorem 1.3.5. If A and B are events in \mathcal{C}, then $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.

Proof. We have $A \cup B=A \cup\left(A^{c} \cap B\right)$ and $B=(A \cap B) \cup\left(A^{c} \cap B\right)$. Hogg, McKean, and Craig justify these set equalities with the following Venn diagrams:

$A \cup B=A \cup\left(A^{c} \cap B\right)$

$A=\left(A \cap B^{c}\right) \cup(A \cap B)$

By Definition 1.3.1(3) (countable additivity),
$P(A \cup B)=P(A)+P\left(A^{c} \cap B\right)$ and $P(B)=P(A \cap B)+P\left(A^{c} \cap B\right)$. So (from the second equation) $P\left(A^{c} \cap B\right)=P(B)-P(A \cap B)$ and (from the first equation)

$$
P(A \cup B)=P(A)+(P(B)-P(A \cap B))=P(A)+P(B)=P(A \cap B)
$$

as claimed.

Theorem 1.3.5

Theorem 1.3.5. If A and B are events in \mathcal{C}, then $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.

Proof. We have $A \cup B=A \cup\left(A^{c} \cap B\right)$ and $B=(A \cap B) \cup\left(A^{c} \cap B\right)$. Hogg, McKean, and Craig justify these set equalities with the following Venn diagrams:

By Definition 1.3.1(3) (countable additivity), $P(A \cup B)=P(A)+P\left(A^{c} \cap B\right)$ and $P(B)=P(A \cap B)+P\left(A^{c} \cap B\right)$. So (from the second equation) $P\left(A^{c} \cap B\right)=P(B)-P(A \cap B)$ and (from the first equation)

$$
P(A \cup B)=P(A)+(P(B)-P(A \cap B))=P(A)+P(B)=P(A \cap B)
$$

as claimed.

Exercise 1.3.4

Exercise 1.3.4. If the sample space is $\mathcal{C}=C_{1} \cup C_{2}$ and if $P\left(C_{1}\right)=0.8$ and $P\left(C_{2}\right)=0.5$, find $P\left(C_{1} \cap C_{2}\right)$.

Solution. With $A=C_{1}$ and $B=C_{2}$, we have from Theorem 1.3.4 that

$$
P\left(C=P\left(C_{1} \cup C_{2}\right)=P\left(C_{1}\right)+P\left(C_{2}\right)-P\left(C_{1} \cap C_{2}\right)\right.
$$

$$
\text { or } 1=(0.8)+(0.5)-P\left(C_{1} \cap C_{2}\right) \text { or } P\left(C_{1} \cap C_{2}\right)=0.3 \text {. }
$$

Exercise 1.3.4

Exercise 1.3.4. If the sample space is $\mathcal{C}=C_{1} \cup C_{2}$ and if $P\left(C_{1}\right)=0.8$ and $P\left(C_{2}\right)=0.5$, find $P\left(C_{1} \cap C_{2}\right)$.

Solution. With $A=C_{1}$ and $B=C_{2}$, we have from Theorem 1.3.4 that

$$
\begin{aligned}
& \quad P\left(\mathcal{C}=P\left(C_{1} \cup C_{2}\right)=P\left(C_{1}\right)+P\left(C_{2}\right)-P\left(C_{1} \cap C_{2}\right)\right. \\
& \text { or } 1=(0.8)+(0.5)-P\left(C_{1} \cap C_{2}\right) \text { or } P\left(C_{1} \cap C_{2}\right)=0.3 .
\end{aligned}
$$

Exercise 1.3.6

Exercise 1.3.6. If the sample space is $\mathcal{C}=\{c \mid-\infty<c<\infty\}$ and if $\mathcal{C} \subset \mathcal{C}$ is a set for which the integral $\int_{C} e^{-|x|} d x$ exists, show that this set function is not a probability set function. What constant do we multiply the integral by to make it a probability function?

Solution. With $C=\mathcal{C}=\mathbb{R}$ we have

Exercise 1.3.6

Exercise 1.3.6. If the sample space is $\mathcal{C}=\{c \mid-\infty<c<\infty\}$ and if $\mathcal{C} \subset \mathcal{C}$ is a set for which the integral $\int_{C} e^{-|x|} d x$ exists, show that this set function is not a probability set function. What constant do we multiply the integral by to make it a probability function?

Solution. With $C=\mathcal{C}=\mathbb{R}$ we have

$$
\begin{aligned}
\int_{\mathbb{R}} e^{-|x|} d x & =\int_{-\infty}^{\infty} e^{-|x|} d x \\
& =2 \int_{0}^{\infty} e^{-|x|} d x \text { since } e^{-|x|} \text { is an even function } \\
& =2 \int_{0}^{\infty} e^{-x} d x \text { since } x \geq 0 \text { here } \\
& =2 \lim _{b \rightarrow \infty}\left(\int_{0}^{b} e^{-x} d x\right)=2 \lim _{b \rightarrow \infty}\left(-\left.e^{-x}\right|_{0} ^{b}\right) \\
& =2 \lim _{b \rightarrow \infty}\left(-e^{-b}+1\right)=2(0+1)=2
\end{aligned}
$$

Exercise 1.3.6 (continued 1)

Solution (continued). So $\int_{C} e^{-|x|} d x$ is not a probability set function because applying it to $C=\mathcal{C}$ does not yield a probability of a (in violation of Definition 1.3.1(2)). If we define $P(C)=\frac{1}{2} \int_{C} e^{-|x|} d x$ then we have $P(\mid c a l C)=1$ and Definition 1.3.1(2) is then satisfied. We should feel comfortable with the claim that $P(\varnothing)=\int_{\varnothing} e^{-|x|} d x=0$ (though this is never technically defined for Riemann integrals), so that Definition 1.3.1(1) is satisfied.

But justifying Definition 1.3.1(3), countable additivity, is more complicated. If the integral is a Riemann integral then there are a lot of restrictions on the collection \mathcal{B} of events. If the integral is a Lebesgue integral then the collection of events \mathcal{B} is the σ-field (or σ-algebra) of Lebesgue measurable sets, which includes lots of sets of real numbers (probably every subset of \mathbb{R} you can think of. . . certainly every subset that I can think of. . . almost. . .).

Exercise 1.3.6 (continued 1)

Solution (continued). So $\int_{C} e^{-|x|} d x$ is not a probability set function because applying it to $C=\mathcal{C}$ does not yield a probability of a (in violation of Definition 1.3.1(2)). If we define $P(C)=\frac{1}{2} \int_{C} e^{-|x|} d x$ then we have $P(\mid c a l C)=1$ and Definition 1.3.1(2) is then satisfied. We should feel comfortable with the claim that $P(\varnothing)=\int_{\varnothing} e^{-|x|} d x=0$ (though this is never technically defined for Riemann integrals), so that Definition 1.3.1(1) is satisfied.

But justifying Definition 1.3.1(3), countable additivity, is more complicated. If the integral is a Riemann integral then there are a lot of restrictions on the collection \mathcal{B} of events. If the integral is a Lebesgue integral then the collection of events \mathcal{B} is the σ-field (or σ-algebra) of Lebesgue measurable sets, which includes lots of sets of real numbers (probably every subset of \mathbb{R} you can think of. . . certainly every subset that I can think of. . . almost. . .).

Exercise 1.3.6 (continued 2)

Exercise 1.3.6. If the sample space is $\mathcal{C}=\{c \mid-\infty<c<\infty\}$ and if $C \subset \mathcal{C}$ is a set for which the integral $\int_{C} e^{-|x|} d x$ exists, show that this set function is not a probability set function. What constant do we multiply the integral by to make it a probability function?

Solution (continued). One of the properties of the Lebesgue integral is countable additivity:

$$
\int_{\cup_{n=1}^{\infty} A_{n}} e^{-|x|}=\sum_{n=1}^{\infty}\left(\int_{A_{n}} e^{-|x|}\right)
$$

so that $P\left(\cup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} P\left(A_{n}\right)$, and Definition 1.3.1(3) is satisfied. For more details on properties of Lebesgue integrals, see my online notes for Real Analysis 1.

Exercise 1.3.9

Exercise 1.3.9. Determine the probability of being dealt a full house, i.e., three-of-a-kind and two-of-a-kind.

Solution. The suit of the three-of-a-kind can be chosen in $\binom{13}{1}=13$ ways and the suit of the two-of-a-kind can then be chose in $\binom{12}{1}=12$ ways.
The three cards in the three-of-a-kind can then be chosen in $\binom{4}{3}$ ways and the two cards in the two-of-a-kind can then be chosen in $\binom{4}{2}$ ways. So the probability of being dealt a full house is

$$
\frac{\binom{13}{1}\binom{12}{1}\binom{1}{3}\binom{1}{2}}{\binom{52}{5}}=\frac{(13)(12)(4)(6)}{2,598,960} \approx 0.00144
$$

Exercise 1.3.9

Exercise 1.3.9. Determine the probability of being dealt a full house, i.e., three-of-a-kind and two-of-a-kind.

Solution. The suit of the three-of-a-kind can be chosen in $\binom{13}{1}=13$ ways and the suit of the two-of-a-kind can then be chose in $\binom{12}{1}=12$ ways.
The three cards in the three-of-a-kind can then be chosen in $\binom{4}{3}$ ways and the two cards in the two-of-a-kind can then be chosen in $\binom{4}{2}$ ways. So the probability of being dealt a full house is

$$
\frac{\binom{13}{1}\binom{12}{1}\binom{4}{3}\binom{4}{2}}{\binom{52}{5}}=\frac{(13)(12)(4)(6)}{2,598,960} \approx 0.00144
$$

Theorem 1.3.6

Theorem 1.3.6. Continuity of the Probability Functions. Let $\left\{C_{n}\right\}$ be a nondecreasing sequence of events. Then

$$
\lim _{n \rightarrow \infty} P\left(C_{n}\right)=P\left(\lim _{n \rightarrow \infty} C_{n}\right)=P\left(\cup_{n=1}^{\infty} C_{n}\right)
$$

Let $\left\{C_{n}\right\}$ be a nonincreasing sequence of sets. Then

$$
\lim _{n \rightarrow \infty} P\left(C_{n}\right)=P\left(\lim _{n \rightarrow \infty} C_{n}\right)=P\left(\cap_{n=1}^{\infty} C_{n}\right)
$$

Proof. First, we consider the proof for a nondecreasing sequence.

Theorem 1.3.6

Theorem 1.3.6. Continuity of the Probability Functions. Let $\left\{C_{n}\right\}$ be a nondecreasing sequence of events. Then

$$
\lim _{n \rightarrow \infty} P\left(C_{n}\right)=P\left(\lim _{n \rightarrow \infty} C_{n}\right)=P\left(\cup_{n=1}^{\infty} C_{n}\right)
$$

Let $\left\{C_{n}\right\}$ be a nonincreasing sequence of sets. Then

$$
\lim _{n \rightarrow \infty} P\left(C_{n}\right)=P\left(\lim _{n \rightarrow \infty} C_{n}\right)=P\left(\cap_{n=1}^{\infty} C_{n}\right)
$$

Proof. First, we consider the proof for a nondecreasing sequence.
Define $R_{1}=C_{1}$ and $R_{n}=C_{n} \cap C_{n-1}^{c}$, for $n \geq 2$. Notice that since the events are in a σ-field then R_{n} is also an event. Then $R_{m} \cap R_{n}=\varnothing$ for $m \neq n$ (since, with $m<n$ say, $R_{m} \subset C_{m}$ but $R_{n} \subset C_{n-1}^{c}$ and since the sequence is nondecreasing then $C_{m} \subset C_{n-1}$, here $m \leq n-1$, and so $\left.C_{m} \cap C_{n-1}^{c}=\varnothing\right)$.

Theorem 1.3.6

Theorem 1.3.6. Continuity of the Probability Functions. Let $\left\{C_{n}\right\}$ be a nondecreasing sequence of events. Then

$$
\lim _{n \rightarrow \infty} P\left(C_{n}\right)=P\left(\lim _{n \rightarrow \infty} C_{n}\right)=P\left(\cup_{n=1}^{\infty} C_{n}\right)
$$

Let $\left\{C_{n}\right\}$ be a nonincreasing sequence of sets. Then

$$
\lim _{n \rightarrow \infty} P\left(C_{n}\right)=P\left(\lim _{n \rightarrow \infty} C_{n}\right)=P\left(\cap_{n=1}^{\infty} C_{n}\right)
$$

Proof. First, we consider the proof for a nondecreasing sequence.
Define $R_{1}=C_{1}$ and $R_{n}=C_{n} \cap C_{n-1}^{c}$, for $n \geq 2$. Notice that since the events are in a σ-field then R_{n} is also an event. Then $R_{m} \cap R_{n}=\varnothing$ for $m \neq n$ (since, with $m<n$ say, $R_{m} \subset C_{m}$ but $R_{n} \subset C_{n-1}^{c}$ and since the sequence is nondecreasing then $C_{m} \subset C_{n-1}$, here $m \leq n-1$, and so $\left.C_{m} \cap C_{n-1}^{c}=\varnothing\right)$.

Theorem 1.3.6 (continued 1)

Proof (continued). Also, $\cup_{n=1}^{\infty} R_{n}=\cup_{n=1}^{\infty} C_{n}$ since $R_{n} \subset C_{n}$ for $n \geq 1$ and any $x \in \cup_{n=1}^{\infty} C_{n}$ is in some C_{N} for a smallest value of $N \in \mathbb{N}$ so that $x \in R_{N}=C_{N} \cap C_{N-1}^{c}$ (since N is the smallest such value then $x \notin X_{N-1}$ and so $x \in C_{N-1}^{c}$; we need $X_{0}=\varnothing$ here). Since $R_{n}=C_{n} \cap C_{n-1}^{c}$ then

$$
R_{n} \cup C_{n-1}^{c}=\left(C_{n} \cap C_{n-1}^{c}\right) \cup C_{n-1}
$$

or $R_{n} \cup C_{n-1}=C_{n}$ and so by Definition 1.3.1(3), countable additivity,

$$
P\left(R_{n} \cup C_{n-1}\right)=P\left(R_{n}\right)+P\left(C_{n-1}\right)=P\left(C_{n}\right)
$$

or $P\left(R_{n}\right)=P\left(C_{n}\right)-P\left(C_{n-1}\right)$. So for any $N \in \mathbb{N}$ we have

$$
\sum_{n=1}^{N} P\left(R_{n}\right)=\sum_{n=1}^{N}\left(P\left(C_{n}\right)-P\left(C_{n-1}\right)\right)=P\left(C_{N}\right)-P\left(C_{0}\right)=P\left(C_{N}\right) .
$$

Theorem 1.3.6 (continued 1)

Proof (continued). Also, $\cup_{n=1}^{\infty} R_{n}=\cup_{n=1}^{\infty} C_{n}$ since $R_{n} \subset C_{n}$ for $n \geq 1$ and any $x \in \cup_{n=1}^{\infty} C_{n}$ is in some C_{N} for a smallest value of $N \in \mathbb{N}$ so that $x \in R_{N}=C_{N} \cap C_{N-1}^{c}$ (since N is the smallest such value then $x \notin X_{N-1}$ and so $x \in C_{N-1}^{c}$; we need $X_{0}=\varnothing$ here). Since $R_{n}=C_{n} \cap C_{n-1}^{c}$ then

$$
R_{n} \cup C_{n-1}^{c}=\left(C_{n} \cap C_{n-1}^{c}\right) \cup C_{n-1}
$$

or $R_{n} \cup C_{n-1}=C_{n}$ and so by Definition 1.3.1(3), countable additivity,

$$
P\left(R_{n} \cup C_{n-1}\right)=P\left(R_{n}\right)+P\left(C_{n-1}\right)=P\left(C_{n}\right)
$$

or $P\left(R_{n}\right)=P\left(C_{n}\right)-P\left(C_{n-1}\right)$. So for any $N \in \mathbb{N}$ we have

$$
\sum_{n=1}^{N} P\left(R_{n}\right)=\sum_{n=1}^{N}\left(P\left(C_{n}\right)-P\left(C_{n-1}\right)\right)=P\left(C_{N}\right)-P\left(C_{0}\right)=P\left(C_{N}\right)
$$

Theorem 1.3.6 (continued 2)

Proof (continued). ...

$$
\sum_{n=1}^{N} P\left(R_{n}\right)=\sum_{n=1}^{N}\left(P\left(C_{n}\right)-P\left(C_{n-1}\right)\right)=P\left(C_{N}\right)-P\left(C_{0}\right)=P\left(C_{N}\right) .
$$

So

$$
\begin{aligned}
P\left(\lim _{n \rightarrow \infty} C_{n}\right) & =P\left(\cup_{n=1}^{\infty} C_{n}\right)=P\left(\vdash_{n=1}^{\infty} R_{n}\right) \\
& =\sum_{n=1}^{\infty} P\left(R_{n}\right) \text { by Definition 1.3.1(3), countable additivity } \\
& =\lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N} P\left(R_{n}\right)\right)=\lim _{N \rightarrow \infty} P\left(C_{N}\right)=\lim _{n \rightarrow \infty} P\left(C_{n}\right)
\end{aligned}
$$

as claimed.

Theorem 1.3.7

Theorem 1.3.7. Boole's Inequality/Countable Subadditivity.
Let $\left\{C_{n}\right\}$ be an arbitrary sequence of events. Then

$$
P\left(\cup_{n=1}^{\infty} C_{n}\right) \leq \sum_{n=1}^{\infty} P\left(C_{n}\right)
$$

Proof. Define $D_{n}=\cup_{i=1}^{n} C_{i}$. Then $\left\{D_{n}\right\}$ is an increasing sequence of events that converge to $\cup_{n=1}^{\infty} C_{n}$. Also $D_{j}=D_{j-1} \cup C_{j}$ for all $j \geq 2$. So by Theorem 1.3.5,

$$
P\left(D_{j}\right)=P\left(D_{j-1} \cup C_{j}\right) \leq P\left(D_{j-1}\right)+P\left(C_{j}\right),
$$

or $P\left(D_{j}\right)-P\left(D_{j-1}\right) \leq P\left(C_{j}\right)$.

Theorem 1.3.7

Theorem 1.3.7. Boole's Inequality/Countable Subadditivity.
Let $\left\{C_{n}\right\}$ be an arbitrary sequence of events. Then

$$
P\left(\cup_{n=1}^{\infty} C_{n}\right) \leq \sum_{n=1}^{\infty} P\left(C_{n}\right)
$$

Proof. Define $D_{n}=\cup_{i=1}^{n} C_{i}$. Then $\left\{D_{n}\right\}$ is an increasing sequence of events that converge to $\cup_{n=1}^{\infty} C_{n}$. Also $D_{j}=D_{j-1} \cup C_{j}$ for all $j \geq 2$. So by Theorem 1.3.5,

$$
P\left(D_{j}\right)=P\left(D_{j-1} \cup C_{j}\right) \leq P\left(D_{j-1}\right)+P\left(C_{j}\right),
$$

or $P\left(D_{j}\right)-P\left(D_{j-1}\right) \leq P\left(C_{j}\right)$.

Theorem 1.3.7 (continued)

Theorem 1.3.7. Boole's Inequality/Countable Subadditivity. Let $\left\{C_{n}\right\}$ be an arbitrary sequence of events. Then

$$
P\left(\cup_{n=1}^{\infty} C_{n}\right) \leq \sum_{n=1}^{\infty} P\left(C_{n}\right)
$$

Proof (continued). So by Theorem 1.3.1,

$$
\begin{gathered}
P\left(\cup_{i=1}^{\infty} C_{n}\right)=\left(\cup_{i=1}^{\infty} D_{c}\right)=\lim _{n \rightarrow \infty} P\left(D_{n}\right) \\
=\lim _{n \rightarrow \infty}\left(P\left(D_{1}\right)+\sum_{j=2}^{n}\left(P\left(D_{j}\right)-P\left(D_{j-1}\right)\right)\right) \leq \lim _{n \rightarrow \infty}\left(P\left(C_{1}\right)+\sum_{j=2}^{\infty} P\left(C_{j}\right)\right) \\
=\sum_{n=1}^{\infty} P\left(C_{n}\right)
\end{gathered}
$$

as claimed.

