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Theorem 1.3.1

Theorem 1.3.1. For each event A € B, P(A) =1 — P(A°).
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Theorem 1.3.1

Theorem 1.3.1. For each event A € B, P(A) =1 — P(A°).

Proof. We have C = AW A°. So by Definition 1.3.1,
1=P(C)=P(AUA°) =P(A)+ P(A),

so that P(A) =1 — P(A°), as claimed. O
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Theorem 1.3.2

Theorem 1.3.2. The probability of the null set is zero; that is, P(&) = 0.
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Theorem 1.3.2

Theorem 1.3.2. The probability of the null set is zero; that is, P(&) = 0.

Proof. With A = @ we have A® =, so by Theorem 1.3.1 we have
P(@)=1-P(C)=1-1=0,

as claimed.

Mathematical Statistics 1 September 14, 2019

4 /17



Theorem 1.3.3

Theorem 1.3.3. If A and B are events such that A C B, then
P(A) < P(B) (in measure theory, this is called monotonicity).
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Theorem 1.3.3

Theorem 1.3.3

Theorem 1.3.3. If A and B are events such that A C B, then
P(A) < P(B) (in measure theory, this is called monotonicity).

Proof. We have B = AUJ (A€ N B), so by Definition 1.3.1(3) (countable
additivity) P(B) = P(A) + P(A° N B) and by Definition 1.3.1(1),
P(A°N B) > 0 so that

P(B) = P(A)+ P(A“N B) > P(A),

or P(A) < P(B), as claimed. O

Mathematical Statistics 1

September 14, 2019 5/17



Theorem 1.3.4

Theorem 1.3.4. For each event A € B we have 0 < P(A) < 1.
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Theorem 1.3.4

Theorem 1.3.4

Theorem 1.3.4. For each event A € B we have 0 < P(A) < 1.

Proof. Since @ C A C C then by Theorem 1.3.2, Theorem 1.3.3, and
Definition 1.3.1(2),

0=P(2) < P(A) < P(C) =1,

or 0 < P(A) <1, as claimed.
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Theorem 1.3.5

Theorem 1.3.5. If A and B are events in C, then
P(AuUB) = P(A)+ P(B) — P(AN B).
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Theorem 1.3.5

Theorem 1.3.5

Theorem 1.3.5. If A and B are events in C, then
P(AuUB) = P(A)+ P(B) — P(AN B).

Proof. We have AUB =AU (A°NB)and B=(ANB)UW (A°NB).
Hogg, McKean, and Craig justify these set equalities with the following

Venn diagrams:
A B ;

AUB=AU(A*NB)

A=(ANB°)J(ANB)
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Theorem 1.3.5

Theorem 1.3.5. If A and B are events in C, then

P(AuUB) = P(A)+ P(B) — P(AN B).

Proof. We have AUB =AU (A°NB)and B=(ANB)UW (A°NB).
Hogg, McKean, and Craig justify these set equalities with the following

Venn diagrams:
A B ;

AUB=AU(A*NB) A=(ANB°)J(ANB)

By Definition 1.3.1(3) (countable additivity),

P(AU B) = P(A) + P(A°N B) and P(B) = P(AN B) + P(A° N B). So
(from the second equation) P(A°N B) = P(B) — P(AN B) and (from the
first equation)

P(AUB) = P(A)+ (P(B)— P(ANnB)) = P(A)+ P(B) = P(AN B),

as claimed. ]
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Exercise 1.3.4

Exercise 1.3.4. If the sample space is C = C; U (; and if P(C;) = 0.8
and P(C2) = 0.5, find P(Cl N C2)
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Exercise 1.3.4

Exercise 1.3.4. If the sample space is C = C; U (; and if P(C;) = 0.8
and P(C2) = 0.5, find P(Cl N C2)

Solution. With A = (; and B = (,, we have from Theorem 1.3.4 that

P(C = P(Cl U C2) = P(Cl) + P(Cz) — P(Cl M C2)

or 1=(0.8) + (0.5) = P(G1 N G) or | P(G1 N G) = 0.3] 0
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Exercise 1.3.6

Exercise 1.3.6

Exercise 1.3.6. If the sample space is C = {c | —00 < ¢ < o0} and if
C C Cis a set for which the integral [~ e~ dx exists, show that this set

function is not a probability set function. What constant do we multiply
the integral by to make it a probability function?
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Exercise 1.3.6

Exercise 1.3.6. If the sample space is C = {c | —00 < ¢ < o0} and if

C C Cis a set for which the integral [~ e~ dx exists, show that this set
function is not a probability set function. What constant do we multiply
the integral by to make it a probability function?

Solution. With C =C = R we have
oo
/ e Mdx — / eIl dx
R —00
o0
= 2/ e I dx since e *I is an even function
0
oo
= 2/ e X dx since x > 0 here
0
b
= 2 lim (/ e ™ dx> =2 lim (—e‘xlé’)
b—oo 0 b—oo
= 2 lim(—e?+1)=2(0+1)=2
b—oo
Mathematical Statistics 1 September 14, 2019 9 /17



Exercise 1.3.6

Exercise 1.3.6 (continued 1)

Solution (continued). So | e Xl dx is not a probability set function
because applying it to C = C does not yield a probability of a (in violation
of Definition 1.3.1(2)). If we define P(C) = 1 [, e Xl dx then we have
P(|calC) =1 and Definition 1.3.1(2) is then satisfied. We should feel
comfortable with the claim that P(@) = [, e~ dx = 0 (though this is

never technically defined for Riemann integrals), so that Definition
1.3.1(1) is satisfied.
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Exercise 1.3.6 (continued 1)

Solution (continued). So | e Xl dx is not a probability set function
because applying it to C = C does not yield a probability of a (in violation
of Definition 1.3.1(2)). If we define P(C) = 1 [, e Xl dx then we have
P(|calC) =1 and Definition 1.3.1(2) is then satisfied. We should feel
comfortable with the claim that P(@) = [, e~ dx = 0 (though this is
never technically defined for Riemann integrals), so that Definition
1.3.1(1) is satisfied.

But justifying Definition 1.3.1(3), countable additivity, is more
complicated. If the integral is a Riemann integral then there are a lot of
restrictions on the collection B of events. If the integral is a Lebesgue
integral then the collection of events B is the o-field (or o-algebra) of
Lebesgue measurable sets, which includes lots of sets of real numbers
(probably every subset of R you can think of. .. certainly every subset that
I can think of...almost...).
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Exercise 1.3.6 (continued 2)

Exercise 1.3.6. If the sample space is C = {c | —00 < ¢ < o0} and if

C C Cis a set for which the integral [ e~ dx exists, show that this set
function is not a probability set function. What constant do we multiply
the integral by to make it a probability function?

Solution (continued). One of the properties of the Lebesgue integral is

countable additivity:
o
/ e =Y (/ e—|x|>
Wn21An n

n=1

so that P (U5 A,) = Y72, P(Ap), and Definition 1.3.1(3) is satisfied.
For more details on properties of Lebesgue integrals, see my online notes
for Real Analysis 1. O
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http://faculty.etsu.edu/gardnerr/5210/notes1.htm
http://faculty.etsu.edu/gardnerr/5210/notes1.htm

Exercise 1.3.9

Exercise 1.3.9. Determine the probability of being dealt a full house, i.e.,
three-of-a-kind and two-of-a-kind.
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Exercise 1.3.9

Exercise 1.3.9. Determine the probability of being dealt a full house, i.e.,
three-of-a-kind and two-of-a-kind.

Solution. The suit of the three-of-a-kind can be chosen in (%) = 13 ways
and the suit of the two-of-a-kind can then be chose in () = 12 ways.
The three cards in the three-of-a-kind can then be chosen in (3) ways and
the two cards in the two-of-a-kind can then be chosen in (3) ways. So the
probability of being dealt a full house is

D)) GG _ 13AE) o gor4a

(552) 2,598,960
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Theorem 1.3.6. Continuity of the Probability Functions

Theorem 1.3.6

Theorem 1.3.6. Continuity of the Probability Functions.
Let {C,} be a nondecreasing sequence of events. Then

lim P(C,) = P( lim Cn> — P(U2,Cp).

n—oo n—oo

Let {C,} be a nonincreasing sequence of sets. Then

lim P(C,) =P ( lim cn) — P(N2,Cp).

n—oo <n—><x>
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Theorem 1.3.6

Theorem 1.3.6. Continuity of the Probability Functions.
Let {C,} be a nondecreasing sequence of events. Then

lim P(C,) = P( lim Cn> — P(U2,Cp).

n—oo n—oo

Let {C,} be a nonincreasing sequence of sets. Then

lim P(C,) =P ( lim cn) — P(N2,Cp).

n—oo <n—>oo

Proof. First, we consider the proof for a nondecreasing sequence.
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Theorem 1.3.6. Continuity of the Probability Functions

Theorem 1.3.6

Theorem 1.3.6. Continuity of the Probability Functions.
Let {C,} be a nondecreasing sequence of events. Then

lim P(C,) = P( lim Cn> — P(U2,Cp).

n—oo n—oo

Let {C,} be a nonincreasing sequence of sets. Then

lim P(C,) =P ( lim cn) — P(N2,Cp).

n—oo <n—>oo

Proof. First, we consider the proof for a nondecreasing sequence.

Define Ry = (i and R, = G, N C5_4, for n > 2. Notice that since the
events are in a o-field then R, is also an event. Then R,,N R, = @ for

m # n (since, with m < n say, Ry, C Cp, but R, C C5_; and since the
sequence is nondecreasing then C,, C C,_1, here m < n—1, and so
CnNCS_, =0).
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Theorem 1.3.6 (continued 1)

Proof (continued). Also, U R, = U C, since R, C C, for n > 1 and
any x € U2, G, is in some Cy for a smallest value of N € N so that
x € Ry = CyN Cf_; (since N is the smallest such value then x & Xy_1

and so x € C§_4; we need Xy = @ here).
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Theorem 1.3.6. Continuity of the Probability Functions

Theorem 1.3.6 (continued 1)

Proof (continued). Also, U R, = U C, since R, C C, for n > 1 and
any x € U2, G, is in some Cy for a smallest value of N € N so that

x € Ry = CyN Cf_; (since N is the smallest such value then x & Xy_1
and so x € C§_4; we need Xog = @ here). Since R, = G, N CS_; then

Rn O] Cﬁ_l - (Cn N Cﬁ_l) W Cnf]_
or R, WU Ch1 = C, and so by Definition 1.3.1(3), countable additivity,
P(R, W Ch—1) = P(Ry) + P(Ch-1) = P(Cp)

or P(R,) = P(C,) — P(Ch—1). So for any N € N we have
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Theorem 1.3.6. Continuity of the Probability Functions

Theorem 1.3.6 (continued 2)

Proof (continued). ...

So

P(lim C) = P(UR1Go) = P(U31R)

n—oo

= Z P(R,) by Definition 1.3.1(3), countable additivity
n=1

N
= lim (ZP(RH)> = |im P(CN): lim P(C,,),

N—o0 N—oo n—o0

as claimed. ]
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Theorem 1.3.7. Boole's Inequality/Countable Subadditivity

Theorem 1.3.7

Theorem 1.3.7. Boole’s Inequality/Countable Subadditivity.
Let {C,} be an arbitrary sequence of events. Then

n1C Z
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Theorem 1.3.7

Theorem 1.3.7. Boole’s Inequality/Countable Subadditivity.
Let {C,} be an arbitrary sequence of events. Then

n1C Z

Proof. Define D, = U_; C;. Then {D,} is an increasing sequence of
events that converge to U2, C,. Also D; = D;_1 U G for all j > 2. So by
Theorem 1.3.5,

P(Dj) = P(Dj-1 U G) < P(Dj-1) + P(G)),

or P(D;) — P(Dj_1) < P(C;).
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Theorem 1.3.7. Boole's Inequality/Countable Subadditivity

Theorem 1.3.7 (continued)

Theorem 1.3.7. Boole’s Inequality/Countable Subadditivity.
Let {C,} be an arbitrary sequence of events. Then

(U, G) EP

Proof (continued). So by Theorem 1.3.1,
P(UZ1Cn) = (UZ1Dc) = lim P(Dp)

= Jlim | P(D1) + Zn:(P(DJ) — P(Dj-1)) | < lim | P(G) + i P(G)
Jj=2 j=2
= Z 'D(Cn)a
as claimed. ) ]
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