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Chapter 1. Introduction to Probability
1.3. The Probability Set Function—Proofs of Theorems
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Theorem 1.3.1

Theorem 1.3.1

Theorem 1.3.1. For each event A ∈ B, P(A) = 1− P(Ac).

Proof. We have C = A ∪· Ac . So by Definition 1.3.1,

1 = P(C) = P(A ∪· Ac) = P(A) + P(Ac),

so that P(A) = 1− P(Ac), as claimed.
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Theorem 1.3.2

Theorem 1.3.2

Theorem 1.3.2. The probability of the null set is zero; that is, P(∅) = 0.

Proof. With A = ∅ we have Ac = C, so by Theorem 1.3.1 we have

P(∅) = 1− P(C) = 1− 1 = 0,

as claimed.
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Theorem 1.3.3

Theorem 1.3.3

Theorem 1.3.3. If A and B are events such that A ⊂ B, then
P(A) ≤ P(B) (in measure theory, this is called monotonicity).

Proof. We have B = A ∪· (Ac ∩ B), so by Definition 1.3.1(3) (countable
additivity) P(B) = P(A) + P(Ac ∩ B) and by Definition 1.3.1(1),
P(Ac ∩ B) ≥ 0 so that

P(B) = P(A) + P(Ac ∩ B) ≥ P(A),

or P(A) ≤ P(B), as claimed.
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Theorem 1.3.4

Theorem 1.3.4

Theorem 1.3.4. For each event A ∈ B we have 0 ≤ P(A) ≤ 1.

Proof. Since ∅ ⊂ A ⊂ C then by Theorem 1.3.2, Theorem 1.3.3, and
Definition 1.3.1(2),

0 = P(∅) ≤ P(A) ≤ P(C) = 1,

or 0 ≤ P(A) ≤ 1, as claimed.
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Theorem 1.3.5

Theorem 1.3.5

Theorem 1.3.5. If A and B are events in C, then
P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

Proof. We have A ∪ B = A ∪· (Ac ∩ B) and B = (A ∩ B) ∪· (Ac ∩ B).
Hogg, McKean, and Craig justify these set equalities with the following
Venn diagrams:

By Definition 1.3.1(3) (countable additivity),
P(A ∪ B) = P(A) + P(Ac ∩ B) and P(B) = P(A ∩ B) + P(Ac ∩ B). So
(from the second equation) P(Ac ∩ B) = P(B)− P(A ∩ B) and (from the
first equation)

P(A ∪ B) = P(A) + (P(B)− P(A ∩ B)) = P(A) + P(B) = P(A ∩ B),

as claimed.
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Exercise 1.3.4

Exercise 1.3.4

Exercise 1.3.4. If the sample space is C = C1 ∪ C2 and if P(C1) = 0.8
and P(C2) = 0.5, find P(C1 ∩ C2).

Solution. With A = C1 and B = C2, we have from Theorem 1.3.4 that

P(C = P(C1 ∪ C2) = P(C1) + P(C2)− P(C1 ∩ C2)

or 1 = (0.8) + (0.5)− P(C1 ∩ C2) or P(C1 ∩ C2) = 0.3 .
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Exercise 1.3.6

Exercise 1.3.6

Exercise 1.3.6. If the sample space is C = {c | −∞ < c < ∞} and if
C ⊂ C is a set for which the integral

∫
C e−|x | dx exists, show that this set

function is not a probability set function. What constant do we multiply
the integral by to make it a probability function?

Solution. With C = C = R we have∫
R

e−|x | dx =

∫ ∞

−∞
e−|x | dx

= 2

∫ ∞

0
e−|x | dx since e−|x | is an even function

= 2

∫ ∞

0
e−x dx since x ≥ 0 here

= 2 lim
b→∞

(∫ b

0
e−x dx

)
= 2 lim

b→∞

(
−e−x |b0

)
= 2 lim

b→∞
(−e−b + 1) = 2(0 + 1) = 2.

() Mathematical Statistics 1 September 14, 2019 9 / 17



Exercise 1.3.6

Exercise 1.3.6

Exercise 1.3.6. If the sample space is C = {c | −∞ < c < ∞} and if
C ⊂ C is a set for which the integral

∫
C e−|x | dx exists, show that this set

function is not a probability set function. What constant do we multiply
the integral by to make it a probability function?

Solution. With C = C = R we have∫
R

e−|x | dx =

∫ ∞

−∞
e−|x | dx

= 2

∫ ∞

0
e−|x | dx since e−|x | is an even function

= 2

∫ ∞

0
e−x dx since x ≥ 0 here

= 2 lim
b→∞

(∫ b

0
e−x dx

)
= 2 lim

b→∞

(
−e−x |b0

)
= 2 lim

b→∞
(−e−b + 1) = 2(0 + 1) = 2.

() Mathematical Statistics 1 September 14, 2019 9 / 17



Exercise 1.3.6

Exercise 1.3.6 (continued 1)

Solution (continued). So
∫
C e−|x | dx is not a probability set function

because applying it to C = C does not yield a probability of a (in violation
of Definition 1.3.1(2)). If we define P(C ) = 1

2

∫
C e−|x | dx then we have

P(|calC ) = 1 and Definition 1.3.1(2) is then satisfied. We should feel
comfortable with the claim that P(∅) =

∫
∅ e−|x | dx = 0 (though this is

never technically defined for Riemann integrals), so that Definition
1.3.1(1) is satisfied.

But justifying Definition 1.3.1(3), countable additivity, is more
complicated. If the integral is a Riemann integral then there are a lot of
restrictions on the collection B of events. If the integral is a Lebesgue
integral then the collection of events B is the σ-field (or σ-algebra) of
Lebesgue measurable sets, which includes lots of sets of real numbers
(probably every subset of R you can think of. . . certainly every subset that
I can think of. . . almost. . . ).
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Exercise 1.3.6

Exercise 1.3.6 (continued 2)

Exercise 1.3.6. If the sample space is C = {c | −∞ < c < ∞} and if
C ⊂ C is a set for which the integral

∫
C e−|x | dx exists, show that this set

function is not a probability set function. What constant do we multiply
the integral by to make it a probability function?

Solution (continued). One of the properties of the Lebesgue integral is
countable additivity: ∫

∪·∞n=1An

e−|x | =
∞∑

n=1

(∫
An

e−|x |
)

so that P (∪·∞n=1An) =
∑∞

n=1 P(An), and Definition 1.3.1(3) is satisfied.
For more details on properties of Lebesgue integrals, see my online notes
for Real Analysis 1.
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Exercise 1.3.9

Exercise 1.3.9

Exercise 1.3.9. Determine the probability of being dealt a full house, i.e.,
three-of-a-kind and two-of-a-kind.

Solution. The suit of the three-of-a-kind can be chosen in
(13

1

)
= 13 ways

and the suit of the two-of-a-kind can then be chose in
(12

1

)
= 12 ways.

The three cards in the three-of-a-kind can then be chosen in
(4
3

)
ways and

the two cards in the two-of-a-kind can then be chosen in
(4
2

)
ways. So the

probability of being dealt a full house is(13
1

)(12
1

)(4
3

)(4
2

)(52
5

) =
(13)(12)(4)(6)

2,598,960
≈ 0.00144.
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Theorem 1.3.6. Continuity of the Probability Functions

Theorem 1.3.6

Theorem 1.3.6. Continuity of the Probability Functions.
Let {Cn} be a nondecreasing sequence of events. Then

lim
n→∞

P(Cn) = P
(

lim
n→∞

Cn

)
= P (∪∞n=1Cn) .

Let {Cn} be a nonincreasing sequence of sets. Then

lim
n→∞

P(Cn) = P
(

lim
n→∞

Cn

)
= P (∩∞n=1Cn) .

Proof. First, we consider the proof for a nondecreasing sequence.

Define R1 = C1 and Rn = Cn ∩ C c
n−1, for n ≥ 2. Notice that since the

events are in a σ-field then Rn is also an event. Then Rm ∩ Rn = ∅ for
m 6= n (since, with m < n say, Rm ⊂ Cm but Rn ⊂ C c

n−1 and since the
sequence is nondecreasing then Cm ⊂ Cn−1, here m ≤ n − 1, and so
Cm ∩ C c

n−1 = ∅).
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Theorem 1.3.6. Continuity of the Probability Functions

Theorem 1.3.6 (continued 1)

Proof (continued). Also, ∪·∞n=1Rn = ∪∞n=1Cn since Rn ⊂ Cn for n ≥ 1 and
any x ∈ ∪∞n=1Cn is in some CN for a smallest value of N ∈ N so that
x ∈ RN = CN ∩ C c

N−1 (since N is the smallest such value then x 6∈ XN−1

and so x ∈ C c
N−1; we need X0 = ∅ here). Since Rn = Cn ∩ C c

n−1 then

Rn ∪· C c
n−1 = (Cn ∩ C c

n−1) ∪· Cn−1

or Rn ∪· Cn−1 = Cn and so by Definition 1.3.1(3), countable additivity,

P(Rn ∪· Cn−1) = P(Rn) + P(Cn−1) = P(Cn)

or P(Rn) = P(Cn)− P(Cn−1). So for any N ∈ N we have

N∑
n=1

P(Rn) =
N∑

n=1

(P(Cn)− P(Cn−1)) = P(CN)− P(C0) = P(CN).
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Theorem 1.3.6. Continuity of the Probability Functions

Theorem 1.3.6 (continued 2)

Proof (continued). . . .

N∑
n=1

P(Rn) =
N∑

n=1

(P(Cn)− P(Cn−1)) = P(CN)− P(C0) = P(CN).

So

P
(

lim
n→∞

Cn

)
= P (∪∞n=1Cn) = P (∪·∞n=1Rn)

=
∞∑

n=1

P(Rn) by Definition 1.3.1(3), countable additivity

= lim
N→∞

(
N∑

n=1

P(Rn)

)
= lim

N→∞
P(CN) = lim

n→∞
P(Cn),

as claimed.
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Theorem 1.3.7. Boole’s Inequality/Countable Subadditivity

Theorem 1.3.7

Theorem 1.3.7. Boole’s Inequality/Countable Subadditivity.
Let {Cn} be an arbitrary sequence of events. Then

P (∪∞n=1Cn) ≤
∞∑

n=1

P(Cn).

Proof. Define Dn = ∪n
i=1Ci . Then {Dn} is an increasing sequence of

events that converge to ∪∞n=1Cn. Also Dj = Dj−1 ∪ Cj for all j ≥ 2. So by
Theorem 1.3.5,

P(Dj) = P(Dj−1 ∪ Cj) ≤ P(Dj−1) + P(Cj),

or P(Dj)− P(Dj−1) ≤ P(Cj).
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Theorem 1.3.7. Boole’s Inequality/Countable Subadditivity

Theorem 1.3.7 (continued)

Theorem 1.3.7. Boole’s Inequality/Countable Subadditivity.
Let {Cn} be an arbitrary sequence of events. Then

P (∪∞n=1Cn) ≤
∞∑

n=1

P(Cn).

Proof (continued). So by Theorem 1.3.1,

P (∪∞i=1Cn) = (∪∞i=1Dc) = lim
n→∞

P(Dn)

= lim
n→∞

P(D1) +
n∑

j=2

(P(Dj)− P(Dj−1))

 ≤ lim
n→∞

P(C1) +
∞∑
j=2

P(Cj)


=

∞∑
n=1

P(Cn),

as claimed.
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