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Chapter 1. Introduction to Probability
1.4. Conditional Probability and Independence—Proofs of Theorems
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Theorem 1.4.A

Theorem 1.4.A

Theorem 1.4.A. Let A,B,B1,B2, . . . be events with P(A) > 0. Then

1. P(B | A) ≥ 0.

2. P(A | A) = 1.

3. P(∪·∞n=1Bn | A) =
∑∞

n=1 P(Bn | A) provided B1,B2, . . . are
mutually exclusive.

Proof. (1) Since P(A) > 0, P(A ∩ B) ≥ 0, and P(B | A) =
P(A ∩ B)

P(A)
,

then P(A | B) ≥ 0.

(2) Since P(A) > 0 and by Definition 1.4.1,

P(A | B) =
P(A ∩ A)

P(A)
=

P(A)

P(A)
= 1.
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Exercise 1.4.6

Exercise 1.4.6

Exercise 1.4.6. A drawer contains eight different pairs of socks. If six
socks are taken at random and without replacement, compute the
probability that there is at least one matching pair among these six socks.

Solution. We compute the probability of the complement event that there
is no pair of socks. We put no condition on the first sock, so that
probability that the first sock does not form a pair(!) is 16/16 = 1. Next,
we compute the probability that the second sock does not form a pair with
the first sock. The probability of this is 14/15. The probability that the
third sock does not form a pair with either the first sock or the second
sock GIVEN that the first two socks do not form a pair is 12/14.

Similarly,
the probability that the 4th sock does not form a pair with the first three
given the first three socks do not form a pair is 10/13, the probability for
the 5th sock is 8/12, and the probability for the 6th sock is 6/11 (notice
that if three more socks were chosen we would get 4/10, 2/9, and 0/8).
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Exercise 1.4.6

Exercise 1.4.6 (continued)

Exercise 1.4.6. A drawer contains eight different pairs of socks. If six
socks are taken at random and without replacement, compute the
probability that there is at least one matching pair among these six socks.

Solution (continued). By the multiplication rule, the probability that no
socks form a pair is(

16

16

) (
14

15

) (
12

14

) (
10

13

) (
8

12

) (
6

11

)
=

32

143
.

So the probability that there is at least one pair is

1− 32

143
=

111

143
≈ 0.776 .
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Theorem 1.4.B. Law of Total Probability

Theorem 1.4.B

Theorem 1.4.B. Law of Total Probability.
Let A1,A2, . . . ,Ak be events such that P(Ai ) > 0 for i = 1, 2, . . . , k and
are mutually exclusive and exhaustive (that is, C = ∪· ki=1Ak). Let B be
another event such that P(B) > 0. Then

P(B) =
k∑

i=1

P(Ai )P(B | Ai ).

Proof. We have B = B ∩ C = B ∩
(
∪· ki=1Ai

)
= ∪· ki=1(B ∩ Ai ). So

P(B) = P
(
∪· ki=1(B ∩ Ai )

)
=

k∑
i=1

P(B ∩ Ai ) =
k∑

i=1

P(Ai )P(B | Ai ),

as claimed.
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Theorem 1.4.1. Bayes’ Theorem

Theorem 1.4.1

Theorem 1.4.1. Bayes’ Theorem.
Let A1,A2, . . . ,Ak be events such that P(Ai ) > 0 for i = 1, 2, . . . , k.
Assume that A1,A2, . . . ,Ak form a partition of the sample space C. Let B
be any event. Then for each j = 1, 2, . . . , k we have

P(Aj | B) =
P(Aj)P(B | Aj)∑k
i=1 P(Ai )P(B | Ai )

.

Proof. By Definition 1.4.1, for each j we have

P(Aj | B) =
P(B ∩ Aj)

P(B)
=

P(Aj)P(B | Aj)

P(B)

=
P(Aj)P(B | Aj)∑k

i=1 P(B | Ai )
by the Law of Total Probability,

as claimed.
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Example 1.4.5

Example 1.4.5

Example 1.4.5. Suppose Bowl A1 contains three red chips and seven blue
chips, and Bowl A2 contains eight red chips and two blue chips. A 6-sided
die is cast and Bowl A1 is selected if five or six spots show on the side that
is up; otherwise Bowl A2 is selected. Therefore P(A1) = 2/6 = 1/3 and
P(A2) = 4/6 = 2/3. A chip is removed from the selected bowl. Let B
denote the event that the selected chip is red. Then P(B | A1) = 3/10
and P(B | A2) = 8/10 = 4/5. We can calculate the conditional
probabilities P(A1 | B) and P(A2 | B) using Bayes’ Theorem:

P(A1 | B) =
P(A1)P(B | A1)

P(A1)P(B | A1) + P(A2)P(B | A2)

=
(1/3)(3/10)

(1/3)(3/10) + (2/3)(4/5)
=

3

19
. . .
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Example 1.4.5

Example 1.4.5 (continued)

Solution (continued). . . . and

P(A2 | B) =
P(A2)P(B | A2)

P(A1)P(B | A1) + P(A2)P(B | A2)

=
(2/3)(4/5)

(1/3)(3/10) + (2/3)(4/5)
=

16

19
.
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Example 1.4.C

Theorem 1.4.C

Theorem 1.4.C. Suppose A and B are independent events. The the
following three pairs of events are independent: Ac and B, A and Bc , and
Ac and Bc .
Proof (this includes Exercise 1.4.11). Since B = (Ac ∩ B) ∪· (A ∩ B)
then P(B) = P(Ac ∩ B) + P(A ∩ B) and so

P(Ac ∩ B) = P(B)− P(A ∩ B)

= P(B)− P(A)P(B) since A and B are independent

= (1− P(A))P(B) = P(Ac)P(B),

so Ac and B are independent, as claimed.

Since A = (A ∩ Bc) ∪· (A ∩ B) then P(A) = P(A ∩ Bc) + P(A ∩ B) and so

P(A ∩ Bc) = P(A)− P(A ∩ B)

= P(A)− P(A)P(B) since A and B are independent

= P(A)(1− P(B)) = P(A)P(Bc),

so A and Bc are independent, as claimed.
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Example 1.4.C

Theorem 1.4.C (continued)

Theorem 1.4.C. Suppose A and B are independent events. The the
following three pairs of events are independent: Ac and B, A and Bc , and
Ac and Bc .

Proof (continued). Since Ac = (Ac ∩ Bc) ∪· (Ac ∩ B) then
P(Ac) = P(Ac ∩ Bc)P(Ac ∩ B) and so

P(Ac ∩ Bc) = P(Ac)− P(Ac ∩ B)

= P(Ac)− P(Ac)P(B) since Ac and B

are independent, as shown above

= P(Ac)(a− P(B)) = P(Ac)P(Bc),

so Ac and Bc are independent, as claimed.
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Exercise 1.4.18

Exercise 1.4.18

Exercise 1.4.18. A die cast independently until the first 6 appears. If the
casting stops on an odd number of times then Bob wins, otherwise Joe
wins. (a) Assuming the die is fair, what is the probability that Bob wins?
(b) Let p denote the probability of a 6. Show that the game favors Bob
for all p with 0 < p < 1.

Solution. (a) Since the die is fair, we expect the probability of casting a 6
is 1/6 and so the probability of casting a non-6 is 5/6. Let n ∈ N. Then
2n − 1 is odd and the probability that the casting ends on 2n − 1 casts is
(5/6)2n−2(1/6). Also, 2n is even and the probability the casting ends on
2n casts is (5/6)2n−1(1/6).

So the probability that Bob wins is

∞∑
n=1

(
5

6

)2n−1 (
1

6

)
=

(
5

6

)−1 (
1

6

) ∞∑
n=1

(
25

36

)n
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Exercise 1.4.18

Exercise 1.4.18 (continued 1)

Solution (continued). . . . So the probability that Bob wins is

∞∑
n=1

(
5

6

)2n−1 (
1

6

)
=

36

150

25/36

1− (25/26)
since we have

a geometric series with ratio r = 25/36

=
1

6

1

11/36
=

6

11
.

(b) With the probability of casting a 6 as p, then the probability of casting
a non-6 is 1− p so, as above, the probability that Bob wins is

∞∑
n=1

(1− p)2n−2p =
p

(1− p)2

∞∑
n=1

((1− p)2)n

=
p

(1− p)2
(1− p)2

1− (1− p)2
=

p

2p − p2
=

1

2− p
.
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Exercise 1.4.18

Exercise 1.4.18 (continued 2)

Exercise 1.4.18. A die cast independently until the first 6 appears. If the
casting stops on an odd number of times then Bob wins, otherwise Joe
wins. (a) Assuming the die is fair, what is the probability that Bob wins?
(b) Let p denote the probability of a 6. Show that the game favors Bob
for all p with 0 < p < 1.

Solution (continued). As above, the probability that Joe wins is

∞∑
n=1

(1− p)2n−1p =
p

1− p

∞∑
n=1

(1− p)2n

=
p

1− p

(1− p)2

1− (1− p)2
=

p(1− p)

2p − p2
=

1− p

2− p
.

For 0 < 0 < 1, 1− p < 1 and
1− p

2− p
<

1

2− p
so that the probability that

Bob wins is greater than the probability that Joe wins.
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