Mathematical Statistics 1

Chapter 1. Introduction to Probability

1.5. Random Variables-Proofs of Theorems

Table of contents

(1) Theorem 1.5.1
(2) Exercise 1.5.2
(3) Theorem 1.5.3

Theorem 1.5.1

Theorem 1.5.1. Let X be a random variable with cumulative distribution function $F(x)$. Then
(a) For all a and b, if $a<b$ then $F(a) \leq F(b)$ (i.e., F is nondecreasing).
(b) $\lim _{x \rightarrow-\infty} F(x)=0$.
(c) $\lim _{x \rightarrow \infty} F(x)=1$.
(d) $\lim _{x \downarrow x_{0}} F(x)=\lim _{x \rightarrow x_{0}^{+}} F(x)=F\left(x_{0}\right)$ (i.e., F is right continuous).

Proof. (a) With $a<b$ we have

$$
\{X \leq a\}=\{x \in \mathcal{C} \mid X(c) \leq a\} \subset\{c \in \mathcal{C} \mid X(c) \leq b\}=\{X \leq b\},
$$

so by monotonicity of P, Theorem 1.3.3, we have $P(X \leq a) \leq P(X \leq b)$ or $F(A)=P(X \leq a) \leq P(X \leq b)=F(b)$, as claimed.

Theorem 1.5.1

Theorem 1.5.1. Let X be a random variable with cumulative distribution function $F(x)$. Then
(a) For all a and b, if $a<b$ then $F(a) \leq F(b)$ (i.e., F is nondecreasing).
(b) $\lim _{x \rightarrow-\infty} F(x)=0$.
(c) $\lim _{x \rightarrow \infty} F(x)=1$.
(d) $\lim _{x \downarrow x_{0}} F(x)=\lim _{x \rightarrow x_{0}^{+}} F(x)=F\left(x_{0}\right)$ (i.e., F is right continuous).

Proof. (a) With $a<b$ we have

$$
\{X \leq a\}=\{x \in \mathcal{C} \mid X(c) \leq a\} \subset\{c \in \mathcal{C} \mid X(c) \leq b\}=\{X \leq b\}
$$

so by monotonicity of P, Theorem 1.3.3, we have $P(X \leq a) \leq P(X \leq b)$ or $F(A)=P(X \leq a) \leq P(X \leq b)=F(b)$, as claimed.

Theorem 1.5.1 (continued 1)

Proof (continued). (b) (This is part of Exercise 1.5.10.) For $n \in \mathbb{N}$, define $x_{n}=-n$ and define $C_{n}=\{c \in \mathcal{C} \mid X(c) \leq-n\}=\{X \leq-n\}$. So $x_{n} \rightarrow-\infty$, the sequence of sets $\left\{C_{n}\right\}$ is nonincreasing and $\lim _{n \rightarrow \infty} C_{n}=\cap_{n=1}^{\infty} C_{n}=\varnothing$. So by the Continuity of the Probability Function, Theorem 1.3.6, we have

$$
\lim _{n \rightarrow \infty} P\left(X \leq x_{n}\right)=\lim _{n \rightarrow \infty} P\left(C_{n}\right)=P\left(\lim _{n \rightarrow \infty} C_{n}\right)=P(\varnothing)=0
$$

where $P(\varnothing)=0$ by Theorem 1.3.2. We now need to replace the limit of the sequence with the limit of the probability function.

Let $\varnothing>0$. Then there exists $N \in \mathbb{N}$ such that for all $n \geq N$ we have $\left|P\left(X \leq x_{n}\right)-0\right|<\varepsilon$ or $0 \leq P\left(X \leq x_{n}\right)<\varepsilon$. Let $x \in \mathbb{R}$ where $x \leq-N$ By part (a), $0 \leq F(x) \leq F(-N)=P\left(X \leq x_{n}\right)<\varepsilon$. So for each $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that if $x \leq-N$ then $|F(x)-0|<\varepsilon$. So by the definition of $\lim _{x \rightarrow-\infty} F(x)=L$, we have $\lim _{x \rightarrow-\infty} F(x)=0$, as

Theorem 1.5.1 (continued 1)

Proof (continued). (b) (This is part of Exercise 1.5.10.) For $n \in \mathbb{N}$, define $x_{n}=-n$ and define $C_{n}=\{c \in \mathcal{C} \mid X(c) \leq-n\}=\{X \leq-n\}$. So $x_{n} \rightarrow-\infty$, the sequence of sets $\left\{C_{n}\right\}$ is nonincreasing and $\lim _{n \rightarrow \infty} C_{n}=\cap_{n=1}^{\infty} C_{n}=\varnothing$. So by the Continuity of the Probability Function, Theorem 1.3.6, we have

$$
\lim _{n \rightarrow \infty} P\left(X \leq x_{n}\right)=\lim _{n \rightarrow \infty} P\left(C_{n}\right)=P\left(\lim _{n \rightarrow \infty} C_{n}\right)=P(\varnothing)=0
$$

where $P(\varnothing)=0$ by Theorem 1.3.2. We now need to replace the limit of the sequence with the limit of the probability function.

Let $\varnothing>0$. Then there exists $N \in \mathbb{N}$ such that for all $n \geq N$ we have $\left|P\left(X \leq x_{n}\right)-0\right|<\varepsilon$ or $0 \leq P\left(X \leq x_{n}\right)<\varepsilon$. Let $x \in \mathbb{R}$ where $x \leq-N$. By part (a), $0 \leq F(x) \leq F(-N)=P\left(X \leq x_{n}\right)<\varepsilon$. So for each $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that if $x \leq-N$ then $|F(x)-0|<\varepsilon$. So by the definition of $\lim _{x \rightarrow-\infty} F(x)=L$, we have $\lim _{x \rightarrow-\infty} F(x)=0$, as claimed.

Theorem 1.5.1 (continued 2)

Proof (continued). (c) (This is part of Exercise 1.5.10.) For $n \in \mathbb{N}$, define $x_{n}=n$ and define $C_{n}=\{c \in \mathcal{C} \mid X(c) \leq n\}=\{X \leq n\}$. So $x_{n} \rightarrow \infty$, the sequence of sets $\left\{C_{n}\right\}$ is nondecreasing and $\lim _{n \rightarrow \infty} C_{n}=\cup_{n=1}^{\infty} C_{n}=\mathbb{R}$. so by the Continuity of the Probability Function, Theorem 1.3.5, we have

$$
\lim _{n \rightarrow \infty} P\left(X \leq x_{n}\right)=\lim _{n \rightarrow \infty} P\left(C_{n}\right)=P\left(\lim _{n \rightarrow \infty} C_{n}\right)=P(\mathbb{R})=1,
$$

where $P(\mathbb{R})=1$ by Definition 1.3.1(2). We now need to replace the limit of the sequence with the limit of the probability function.

Let $\varepsilon>0$. Then there exists $N \in \mathbb{N}$ such that for all $n \geq N$ we have $\left|P\left(X \leq x_{n}\right)=1\right|<\varepsilon$, or $1-\varepsilon<P\left(X \leq x_{n}\right) \leq 1$, or $1-\varepsilon<F\left(x_{n}\right) \leq 1$. Let $x \in \mathbb{R}$ where $x \geq N$. By part (a), $F(x) \geq F(N)=F\left(x_{n}\right)$ or $1-\varepsilon<F\left(x_{n}\right) \leq F(x) \leq 1$, or $\left|F(x)-F\left(x_{n}\right)\right|<\varepsilon$. So for each $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that if $x \geq N$ then $\left|F(x)-F\left(x_{n}\right)\right|<\varepsilon$. So by the definition of $\lim _{x \rightarrow \infty} F(x)=L$ we have $\lim _{x \rightarrow \infty} F(x)=1$, as claimed

Theorem 1.5.1 (continued 2)

Proof (continued). (c) (This is part of Exercise 1.5.10.) For $n \in \mathbb{N}$, define $x_{n}=n$ and define $C_{n}=\{c \in \mathcal{C} \mid X(c) \leq n\}=\{X \leq n\}$. So $x_{n} \rightarrow \infty$, the sequence of sets $\left\{C_{n}\right\}$ is nondecreasing and $\lim _{n \rightarrow \infty} C_{n}=\cup_{n=1}^{\infty} C_{n}=\mathbb{R}$. so by the Continuity of the Probability Function, Theorem 1.3.5, we have

$$
\lim _{n \rightarrow \infty} P\left(X \leq x_{n}\right)=\lim _{n \rightarrow \infty} P\left(C_{n}\right)=P\left(\lim _{n \rightarrow \infty} C_{n}\right)=P(\mathbb{R})=1,
$$

where $P(\mathbb{R})=1$ by Definition 1.3.1(2). We now need to replace the limit of the sequence with the limit of the probability function.

Let $\varepsilon>0$. Then there exists $N \in \mathbb{N}$ such that for all $n \geq N$ we have $\left|P\left(X \leq x_{n}\right)=1\right|<\varepsilon$, or $1-\varepsilon<P\left(X \leq x_{n}\right) \leq 1$, or $1-\varepsilon<F\left(x_{n}\right) \leq 1$.
Let $x \in \mathbb{R}$ where $x \geq N$. By part (a), $F(x) \geq F(N)=F\left(x_{n}\right)$ or $1-\varepsilon<F\left(x_{n}\right) \leq F(x) \leq 1$, or $\left|F(x)-F\left(x_{n}\right)\right|<\varepsilon$. So for each $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that if $x \geq N$ then $\left|F(x)-F\left(x_{n}\right)\right|<\varepsilon$. So by the definition of $\lim _{x \rightarrow \infty} F(x)=L$ we have $\lim _{x \rightarrow \infty} F(x)=1$, as claimed.

Theorem 1.5.1 (continued 3)

Proof (continued). (d) Consider the sequence $\left\{x_{n}\right\}$ where $x_{n}=x_{0}+1 / n$. Then $x_{n} \rightarrow x_{0}^{+}$. For $n \in \mathbb{N}$, define $C_{n}=\left\{c \in \mathcal{C} \mid X(c) \leq x_{n}\right\}=\left\{X \leq x_{n}\right\}$. Then the sequence of sets $\left\{C_{n}\right\}$ is nonincreasing and $\lim _{n \rightarrow \infty} C_{n}=\cap_{n=1}^{\infty} C_{n}=\left\{X \leq x_{0}\right\}$. (Notice that the text book makes an error here by simply assuming that $x_{n} \rightarrow x_{0}^{+}$; if any $x_{n}<x_{0}$ then they do not have $\cap_{n=1}^{\infty} C_{n}=\left\{X \leq x_{0}\right\}$, and, unless $\left\{x_{n}\right\}$ is a monotone decreasing sequence, they do not have that $\left\{C_{n}\right\}$ is a nonincreasing sequence of sets.)

Theorem 1.5.1 (continued 3)

Proof (continued). (d) Consider the sequence $\left\{x_{n}\right\}$ where $x_{n}=x_{0}+1 / n$. Then $x_{n} \rightarrow x_{0}^{+}$. For $n \in \mathbb{N}$, define $C_{n}=\left\{c \in \mathcal{C} \mid X(c) \leq x_{n}\right\}=\left\{X \leq x_{n}\right\}$. Then the sequence of sets $\left\{C_{n}\right\}$ is nonincreasing and $\lim _{n \rightarrow \infty} C_{n}=\cap_{n=1}^{\infty} C_{n}=\left\{X \leq x_{0}\right\}$. (Notice that the text book makes an error here by simply assuming that $x_{n} \rightarrow x_{0}^{+}$; if any $x_{n}<x_{0}$ then they do not have $\cap_{n=1}^{\infty} C_{n}=\left\{X \leq x_{0}\right\}$, and, unless $\left\{x_{n}\right\}$ is a monotone decreasing sequence, they do not have that $\left\{C_{n}\right\}$ is a nonincreasing sequence of sets.) So the the Continuity of the Probability Function, Theorem 1.3.6, we have

$$
\begin{gathered}
\lim _{n \rightarrow \infty} P\left(X \leq x_{n}\right)=\lim _{n \rightarrow \infty} P\left(C_{n}\right)=P\left(\lim _{n \rightarrow \infty} C_{n}\right) \\
=P\left(\cap_{n=1}^{\infty} C_{n}\right)=P\left(X \leq x_{0}\right)=F\left(x_{0}\right) .
\end{gathered}
$$

We now need to replace the limit of the sequence with the limit of the probability function.

Theorem 1.5.1 (continued 3)

Proof (continued). (d) Consider the sequence $\left\{x_{n}\right\}$ where $x_{n}=x_{0}+1 / n$. Then $x_{n} \rightarrow x_{0}^{+}$. For $n \in \mathbb{N}$, define $C_{n}=\left\{c \in \mathcal{C} \mid X(c) \leq x_{n}\right\}=\left\{X \leq x_{n}\right\}$. Then the sequence of sets $\left\{C_{n}\right\}$ is nonincreasing and $\lim _{n \rightarrow \infty} C_{n}=\cap_{n=1}^{\infty} C_{n}=\left\{X \leq x_{0}\right\}$. (Notice that the text book makes an error here by simply assuming that $x_{n} \rightarrow x_{0}^{+}$; if any $x_{n}<x_{0}$ then they do not have $\cap_{n=1}^{\infty} C_{n}=\left\{X \leq x_{0}\right\}$, and, unless $\left\{x_{n}\right\}$ is a monotone decreasing sequence, they do not have that $\left\{C_{n}\right\}$ is a nonincreasing sequence of sets.) So the the Continuity of the Probability Function, Theorem 1.3.6, we have

$$
\begin{gathered}
\lim _{n \rightarrow \infty} P\left(X \leq x_{n}\right)=\lim _{n \rightarrow \infty} P\left(C_{n}\right)=P\left(\lim _{n \rightarrow \infty} C_{n}\right) \\
=P\left(\cap_{n=1}^{\infty} C_{n}\right)=P\left(X \leq x_{0}\right)=F\left(x_{0}\right) .
\end{gathered}
$$

We now need to replace the limit of the sequence with the limit of the probability function.

Theorem 1.5.1 (continued 4)

Theorem 1.5.1. Let X be a random variable with cumulative distribution function $F(x)$. Then
(d) $\lim _{x \backslash x_{0}} F(x)=\lim _{x \rightarrow x_{0}^{+}} F(x)=F\left(x_{0}\right)$ (i.e., F is right continuous).
Proof (continued). Let $\varepsilon>0$. Then there is $N \in \mathbb{N}$ such that for all $n \geq N$ we have $\left|P\left(X \leq x_{n}\right)-F\left(x_{0}\right)\right|<\varepsilon$, or $\left|F\left(x_{n}\right)-F\left(x_{0}\right)\right|<\varepsilon$. By part (a), $F\left(x_{n}\right) \geq F\left(x_{0}\right)$ so we have $0 \leq F\left(x_{n}\right)-F\left(x_{0}\right)<\varepsilon$ for all $n \geq N$. Let $x \in \mathbb{R}$ satisfy $x \geq x_{0}$ and $\left|x-x_{0}\right|=x-x_{0}<\delta=1 / N$. Then $x_{0} \leq x<x_{0}+1 / N=x_{N}$ and by part (a), $F\left(x_{0}\right) \leq F(x) \leq F\left(x_{0}+1 / N\right)$. Hence

$$
0 \leq F(x)-F\left(x_{0}\right) \leq F\left(x_{0}+1 / N\right)-F\left(x_{0}\right)<\varepsilon .
$$

So for $\varepsilon>0$ there is $\delta>0$ such that if $\left|x-x_{0}\right|<\delta$ then
$0 \leq F(x)=F\left(x_{0}\right)<\varepsilon$. That is, by definition, $\lim _{x \rightarrow x_{0}^{+}} F(x)-F\left(x_{0}\right)$, as claimed.

Theorem 1.5.1 (continued 4)

Theorem 1.5.1. Let X be a random variable with cumulative distribution function $F(x)$. Then
(d) $\lim _{x \downarrow x_{0}} F(x)=\lim _{x \rightarrow x_{0}^{+}} F(x)=F\left(x_{0}\right)$ (i.e., F is right continuous).
Proof (continued). Let $\varepsilon>0$. Then there is $N \in \mathbb{N}$ such that for all $n \geq N$ we have $\left|P\left(X \leq x_{n}\right)-F\left(x_{0}\right)\right|<\varepsilon$, or $\left|F\left(x_{n}\right)-F\left(x_{0}\right)\right|<\varepsilon$. By part (a), $F\left(x_{n}\right) \geq F\left(x_{0}\right)$ so we have $0 \leq F\left(x_{n}\right)-F\left(x_{0}\right)<\varepsilon$ for all $n \geq N$. Let $x \in \mathbb{R}$ satisfy $x \geq x_{0}$ and $\left|x-x_{0}\right|=x-x_{0}<\delta=1 / N$. Then $x_{0} \leq x<x_{0}+1 / N=x_{N}$ and by part (a), $F\left(x_{0}\right) \leq F(x) \leq F\left(x_{0}+1 / N\right)$. Hence

$$
0 \leq F(x)-F\left(x_{0}\right) \leq F\left(x_{0}+1 / N\right)-F\left(x_{0}\right)<\varepsilon .
$$

So for $\varepsilon>0$ there is $\delta>0$ such that if $\left|x-x_{0}\right|<\delta$ then $0 \leq F(x)=F\left(x_{0}\right)<\varepsilon$. That is, by definition, $\lim _{x \rightarrow x_{0}^{+}} F(x)-F\left(x_{0}\right)$, as claimed.

Exercise 1.5.2

Theorem 1.5.2. Let X be a random variable with cumulative distribution function F_{X}. Then for $a<b$ we have $\left.P(a<X) \leq b\right)=F_{X}(b)-F_{X}(a)$.

Proof. Since $\{X \leq b\}=\{X \leq a\} \cup\{a<X \leq b\}$, then by finite additivity of probability, $P(X \leq b)=P(X \leq a)+P(a<X \leq b)$ or

$$
P(a<X \leq b)=P(X \leq b)-P(X \leq a)=F_{X}(b)-F_{X}(a)
$$

Exercise 1.5.2

Theorem 1.5.2. Let X be a random variable with cumulative distribution function F_{X}. Then for $a<b$ we have $\left.P(a<X) \leq b\right)=F_{X}(b)-F_{X}(a)$.

Proof. Since $\{X \leq b\}=\{X \leq a\} \cup\{a<X \leq b\}$, then by finite additivity of probability, $P(X \leq b)=P(X \leq a)+P(a<X \leq b)$ or

$$
P(a<X \leq b)=P(X \leq b)-P(X \leq a)=F_{X}(b)-F_{X}(a)
$$

as claimed.

Theorem 1.5.3

Theorem 1.5.3. For random variable $X, P(X=x)=F_{X}(x)-F_{X}\left(x^{-}\right)$ for all $x \in \mathbb{R}$, where $F_{X}\left(x^{-}\right)=\lim _{z \rightarrow x^{-}} F_{X}(z)$.

Proof. For any $x \in \mathbb{R}$ we have $\{x\}=\cap_{n=1}^{\infty}(x-1 / n, x]$ and the sequence of sets $(x-1 / N, x]$ is nonincreasing so that $\lim _{n \rightarrow \infty}(x-1 / N, x]=\{x\}$. So by the Continuity of the Probability Functions, Theorem 1.3.6,

$$
\begin{align*}
P(X=x) & =P\left(\lim _{n \rightarrow \infty}(x-1 / n, x]\right)=\lim _{n \rightarrow \infty} P((x-1 / n, x]) \\
& =\lim _{n \rightarrow \infty}\left(F_{X}(x)-F_{X}(x-1 / n)\right) \text { by Theorem 1.5.2 } \\
& =F_{X}(x)-\lim _{n \rightarrow \infty} F_{X}(x-1 / x) . \tag{*}
\end{align*}
$$

We now need to replace the limit of the sequence with the limit of the cumulative density function.

Theorem 1.5.3

Theorem 1.5.3. For random variable $X, P(X=x)=F_{X}(x)-F_{X}\left(x^{-}\right)$ for all $x \in \mathbb{R}$, where $F_{X}\left(x^{-}\right)=\lim _{z \rightarrow x^{-}} F_{X}(z)$.

Proof. For any $x \in \mathbb{R}$ we have $\{x\}=\cap_{n=1}^{\infty}(x-1 / n, x]$ and the sequence of sets $(x-1 / N, x]$ is nonincreasing so that $\lim _{n \rightarrow \infty}(x-1 / N, x]=\{x\}$. So by the Continuity of the Probability Functions, Theorem 1.3.6,

$$
\begin{align*}
P(X=x) & =P\left(\lim _{n \rightarrow \infty}(x-1 / n, x]\right)=\lim _{n \rightarrow \infty} P((x-1 / n, x]) \\
& =\lim _{n \rightarrow \infty}\left(F_{X}(x)-F_{X}(x-1 / n)\right) \text { by Theorem 1.5.2 } \\
& =F_{X}(x)-\lim _{n \rightarrow \infty} F_{X}(x-1 / x) . \tag{*}
\end{align*}
$$

We now need to replace the limit of the sequence with the limit of the cumulative density function.

Theorem 1.5.3 (continued)

Theorem 1.5.3. For random variable $X, P(X=x)=F_{X}(x)-F_{X}\left(x^{-}\right)$ for all $x \in \mathbb{R}$, where $F_{X}\left(x^{-}\right)=\lim _{z \rightarrow x^{-}} F_{X}(z)$.

Proof (continued). Since F_{X} is monotone then $\lim _{z \rightarrow x^{-}} F_{X}(z)$ exists for all $x \in \mathbb{R}$ (see my Analysis 1 notes on 4.2. Monotone and Inverse Functions, Theorem 4-13). Let $\varepsilon>0$. Since $\lim _{z \rightarrow x^{-}} F_{X}(z)$ exists, say $\lim _{z \rightarrow x^{-}} F_{X}(z)=L$, then there exists $\delta>0$ such that if $0<x-z<\delta$ then $\left|F_{X}(x)-L\right|<\varepsilon$.

Theorem 1.5.3 (continued)

Theorem 1.5.3. For random variable $X, P(X=x)=F_{X}(x)-F_{X}\left(x^{-}\right)$ for all $x \in \mathbb{R}$, where $F_{X}\left(x^{-}\right)=\lim _{z \rightarrow x^{-}} F_{X}(z)$.

Proof (continued). Since F_{X} is monotone then $\lim _{z \rightarrow x^{-}} F_{X}(z)$ exists for all $x \in \mathbb{R}$ (see my Analysis 1 notes on 4.2. Monotone and Inverse Functions, Theorem 4-13). Let $\varepsilon>0$. Since $\lim _{z \rightarrow x^{-}} F_{X}(z)$ exists, say $\lim _{z \rightarrow x^{-}} F_{X}(z)=L$, then there exists $\delta>0$ such that if $0<x-z<\delta$ then $\left|F_{X}(x)-L\right|<\varepsilon$. Let $N \in \mathbb{N}$ satisfy $N>1 / \delta$. Then for $n \geq N$ we have $0<x-(x-1 / n)=1 / n \leq 1 / N<\delta$ and so $\left|F_{X}(x-1 / n)-L\right|<\varepsilon$. Therefore, by the definition of $\lim _{n \rightarrow \infty} F_{X}(x-1 / n)=L$, we have $\lim _{n \rightarrow \infty} F_{X}(x-1 / n)=L=\lim _{z \rightarrow x^{-}} F_{X}(z)$. Combining this with $(*)$ gives $P(X=x)=F_{X}(x)-\lim _{z \rightarrow x^{-}} F_{X}(z)=F_{X}(x)-F_{X}\left(x^{-}\right)$, as claimed.

Theorem 1.5.3 (continued)

Theorem 1.5.3. For random variable $X, P(X=x)=F_{X}(x)-F_{X}\left(x^{-}\right)$ for all $x \in \mathbb{R}$, where $F_{X}\left(x^{-}\right)=\lim _{z \rightarrow x^{-}} F_{X}(z)$.

Proof (continued). Since F_{X} is monotone then $\lim _{z \rightarrow x^{-}} F_{X}(z)$ exists for all $x \in \mathbb{R}$ (see my Analysis 1 notes on 4.2. Monotone and Inverse Functions, Theorem 4-13). Let $\varepsilon>0$. Since $\lim _{z \rightarrow x^{-}} F_{X}(z)$ exists, say $\lim _{z \rightarrow x^{-}} F_{X}(z)=L$, then there exists $\delta>0$ such that if $0<x-z<\delta$ then $\left|F_{X}(x)-L\right|<\varepsilon$. Let $N \in \mathbb{N}$ satisfy $N>1 / \delta$. Then for $n \geq N$ we have $0<x-(x-1 / n)=1 / n \leq 1 / N<\delta$ and so $\left|F_{X}(x-1 / n)-L\right|<\varepsilon$. Therefore, by the definition of $\lim _{n \rightarrow \infty} F_{X}(x-1 / n)=L$, we have $\lim _{n \rightarrow \infty} F_{X}(x-1 / n)=L=\lim _{z \rightarrow x^{-}} F_{X}(z)$. Combining this with (*) gives $P(X=x)=F_{X}(x)-\lim _{z \rightarrow x^{-}} F_{X}(z)=F_{X}(x)-F_{X}\left(x^{-}\right)$, as claimed.

