Mathematical Statistics 1

Chapter 1. Introduction to Probability 1.5. Random Variables—Proofs of Theorems

Theorem 1.5.1. Let X be a random variable with cumulative distribution function F(x). Then

(a) For all a and b, if a < b then F(a) ≤ F(b) (i.e., F is nondecreasing).

(b)
$$\lim_{x\to -\infty} F(x) = 0.$$

(c)
$$\lim_{x\to\infty} F(x) = 1.$$

(d) $\lim_{x \downarrow x_0} F(x) = \lim_{x \to x_0^+} F(x) = F(x_0)$ (i.e., F is right continuous).

Proof. (a) With a < b we have

 $\{X \leq a\} = \{x \in \mathcal{C} \mid X(c) \leq a\} \subset \{c \in \mathcal{C} \mid X(c) \leq b\} = \{X \leq b\},\$

so by monotonicity of P, Theorem 1.3.3, we have $P(X \le a) \le P(X \le b)$ or $F(A) = P(X \le a) \le P(X \le b) = F(b)$, as claimed.

Theorem 1.5.1. Let X be a random variable with cumulative distribution function F(x). Then

(a) For all a and b, if a < b then F(a) ≤ F(b) (i.e., F is nondecreasing).

(b)
$$\lim_{x\to -\infty} F(x) = 0.$$

(c)
$$\lim_{x\to\infty} F(x) = 1.$$

(d) $\lim_{x \downarrow x_0} F(x) = \lim_{x \to x_0^+} F(x) = F(x_0)$ (i.e., F is right continuous).

Proof. (a) With a < b we have

 $\{X \leq \mathsf{a}\} = \{x \in \mathcal{C} \mid X(c) \leq \mathsf{a}\} \subset \{c \in \mathcal{C} \mid X(c) \leq \mathsf{b}\} = \{X \leq \mathsf{b}\},\$

so by monotonicity of P, Theorem 1.3.3, we have $P(X \le a) \le P(X \le b)$ or $F(A) = P(X \le a) \le P(X \le b) = F(b)$, as claimed.

Theorem 1.5.1 (continued 1)

Proof (continued). (b) (This is part of Exercise 1.5.10.) For $n \in \mathbb{N}$, define $x_n = -n$ and define $C_n = \{c \in \mathcal{C} \mid X(c) \leq -n\} = \{X \leq -n\}$. So $x_n \to -\infty$, the sequence of sets $\{C_n\}$ is nonincreasing and $\lim_{n\to\infty} C_n = \bigcap_{n=1}^{\infty} C_n = \emptyset$. So by the Continuity of the Probability Function, Theorem 1.3.6, we have

$$\lim_{n\to\infty} P(X \le x_n) = \lim_{n\to\infty} P(C_n) = P\left(\lim_{n\to\infty} C_n\right) = P(\emptyset) = 0,$$

where $P(\emptyset) = 0$ by Theorem 1.3.2. We now need to replace the limit of the sequence with the limit of the probability function.

Let $\emptyset > 0$. Then there exists $N \in \mathbb{N}$ such that for all $n \ge N$ we have $|P(X \le x_n) - 0| < \varepsilon$ or $0 \le P(X \le x_n) < \varepsilon$. Let $x \in \mathbb{R}$ where $x \le -N$. By part (a), $0 \le F(x) \le F(-N) = P(X \le x_n) < \varepsilon$. So for each $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $x \le -N$ then $|F(x) - 0| < \varepsilon$. So by the definition of $\lim_{x \to -\infty} F(x) = L$, we have $\lim_{x \to -\infty} F(x) = 0$, as claimed.

Theorem 1.5.1 (continued 1)

Proof (continued). (b) (This is part of Exercise 1.5.10.) For $n \in \mathbb{N}$, define $x_n = -n$ and define $C_n = \{c \in \mathcal{C} \mid X(c) \leq -n\} = \{X \leq -n\}$. So $x_n \to -\infty$, the sequence of sets $\{C_n\}$ is nonincreasing and $\lim_{n\to\infty} C_n = \bigcap_{n=1}^{\infty} C_n = \emptyset$. So by the Continuity of the Probability Function, Theorem 1.3.6, we have

$$\lim_{n\to\infty} P(X \le x_n) = \lim_{n\to\infty} P(C_n) = P\left(\lim_{n\to\infty} C_n\right) = P(\emptyset) = 0,$$

where $P(\emptyset) = 0$ by Theorem 1.3.2. We now need to replace the limit of the sequence with the limit of the probability function.

Let $\emptyset > 0$. Then there exists $N \in \mathbb{N}$ such that for all $n \ge N$ we have $|P(X \le x_n) - 0| < \varepsilon$ or $0 \le P(X \le x_n) < \varepsilon$. Let $x \in \mathbb{R}$ where $x \le -N$. By part (a), $0 \le F(x) \le F(-N) = P(X \le x_n) < \varepsilon$. So for each $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $x \le -N$ then $|F(x) - 0| < \varepsilon$. So by the definition of $\lim_{x \to -\infty} F(x) = L$, we have $\lim_{x \to -\infty} F(x) = 0$, as claimed.

Theorem 1.5.1 (continued 2)

Proof (continued). (c) (This is part of Exercise 1.5.10.) For $n \in \mathbb{N}$, define $x_n = n$ and define $C_n = \{c \in \mathcal{C} \mid X(c) \leq n\} = \{X \leq n\}$. So $x_n \to \infty$, the sequence of sets $\{C_n\}$ is nondecreasing and $\lim_{n\to\infty} C_n = \bigcup_{n=1}^{\infty} C_n = \mathbb{R}$. so by the Continuity of the Probability Function, Theorem 1.3.5, we have

$$\lim_{n\to\infty} P(X \le x_n) = \lim_{n\to\infty} P(C_n) = P\left(\lim_{n\to\infty} C_n\right) = P(\mathbb{R}) = 1,$$

where $P(\mathbb{R}) = 1$ by Definition 1.3.1(2). We now need to replace the limit of the sequence with the limit of the probability function.

Let $\varepsilon > 0$. Then there exists $N \in \mathbb{N}$ such that for all $n \ge N$ we have $|P(X \le x_n) = 1| < \varepsilon$, or $1 - \varepsilon < P(X \le x_n) \le 1$, or $1 - \varepsilon < F(x_n) \le 1$. Let $x \in \mathbb{R}$ where $x \ge N$. By part (a), $F(x) \ge F(N) = F(x_n)$ or $1 - \varepsilon < F(x_n) \le F(x) \le 1$, or $|F(x) - F(x_n)| < \varepsilon$. So for each $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $x \ge N$ then $|F(x) - F(x_n)| < \varepsilon$. So by the definition of $\lim_{x\to\infty} F(x) = L$ we have $\lim_{x\to\infty} F(x) = 1$, as claimed. \Box

Theorem 1.5.1 (continued 2)

Proof (continued). (c) (This is part of Exercise 1.5.10.) For $n \in \mathbb{N}$, define $x_n = n$ and define $C_n = \{c \in \mathcal{C} \mid X(c) \leq n\} = \{X \leq n\}$. So $x_n \to \infty$, the sequence of sets $\{C_n\}$ is nondecreasing and $\lim_{n\to\infty} C_n = \bigcup_{n=1}^{\infty} C_n = \mathbb{R}$. so by the Continuity of the Probability Function, Theorem 1.3.5, we have

$$\lim_{n\to\infty} P(X \le x_n) = \lim_{n\to\infty} P(C_n) = P\left(\lim_{n\to\infty} C_n\right) = P(\mathbb{R}) = 1,$$

where $P(\mathbb{R}) = 1$ by Definition 1.3.1(2). We now need to replace the limit of the sequence with the limit of the probability function.

Let $\varepsilon > 0$. Then there exists $N \in \mathbb{N}$ such that for all $n \ge N$ we have $|P(X \le x_n) = 1| < \varepsilon$, or $1 - \varepsilon < P(X \le x_n) \le 1$, or $1 - \varepsilon < F(x_n) \le 1$. Let $x \in \mathbb{R}$ where $x \ge N$. By part (a), $F(x) \ge F(N) = F(x_n)$ or $1 - \varepsilon < F(x_n) \le 1$, or $|F(x) - F(x_n)| < \varepsilon$. So for each $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $x \ge N$ then $|F(x) - F(x_n)| < \varepsilon$. So by the definition of $\lim_{x\to\infty} F(x) = L$ we have $\lim_{x\to\infty} F(x) = 1$, as claimed. \Box

Theorem 1.5.1 (continued 3)

Proof (continued). (d) Consider the sequence $\{x_n\}$ where $x_n = x_0 + 1/n$. Then $x_n \to x_0^+$. For $n \in \mathbb{N}$, define $C_n = \{c \in \mathcal{C} \mid X(c) \le x_n\} = \{X \le x_n\}$. Then the sequence of sets $\{C_n\}$ is nonincreasing and $\lim_{n\to\infty} C_n = \bigcap_{n=1}^{\infty} C_n = \{X \le x_0\}$. (Notice that the text book makes an error here by simply assuming that $x_n \to x_0^+$; if any $x_n < x_0$ then they do not have $\bigcap_{n=1}^{\infty} C_n = \{X \le x_0\}$, and, unless $\{x_n\}$ is a monotone decreasing sequence, they do not have that $\{C_n\}$ is a nonincreasing sequence of sets.)

Theorem 1.5.1 (continued 3)

Proof (continued). (d) Consider the sequence $\{x_n\}$ where $x_n = x_0 + 1/n$. Then $x_n \to x_0^+$. For $n \in \mathbb{N}$, define $C_n = \{c \in \mathcal{C} \mid X(c) \leq x_n\} = \{X \leq x_n\}$. Then the sequence of sets $\{C_n\}$ is nonincreasing and $\lim_{n\to\infty} C_n = \bigcap_{n=1}^{\infty} C_n = \{X \leq x_0\}$. (Notice that the text book makes an error here by simply assuming that $x_n \to x_0^+$; if any $x_n < x_0$ then they do not have $\bigcap_{n=1}^{\infty} C_n = \{X \leq x_0\}$, and, unless $\{x_n\}$ is a monotone decreasing sequence, they do not have that $\{C_n\}$ is a nonincreasing sequence of sets.) So the the Continuity of the Probability Function, Theorem 1.3.6, we have

$$\lim_{n\to\infty} P(X \le x_n) = \lim_{n\to\infty} P(C_n) = P\left(\lim_{n\to\infty} C_n\right)$$

$$= P\left(\cap_{n=1}^{\infty} C_n\right) = P(X \le x_0) = F(x_0).$$

We now need to replace the limit of the sequence with the limit of the probability function.

Theorem 1.5.1 (continued 3)

Proof (continued). (d) Consider the sequence $\{x_n\}$ where $x_n = x_0 + 1/n$. Then $x_n \to x_0^+$. For $n \in \mathbb{N}$, define $C_n = \{c \in \mathcal{C} \mid X(c) \le x_n\} = \{X \le x_n\}$. Then the sequence of sets $\{C_n\}$ is nonincreasing and $\lim_{n\to\infty} C_n = \bigcap_{n=1}^{\infty} C_n = \{X \le x_0\}$. (Notice that the text book makes an error here by simply assuming that $x_n \to x_0^+$; if any $x_n < x_0$ then they do not have $\bigcap_{n=1}^{\infty} C_n = \{X \le x_0\}$, and, unless $\{x_n\}$ is a monotone decreasing sequence, they do not have that $\{C_n\}$ is a nonincreasing sequence of sets.) So the the Continuity of the Probability Function, Theorem 1.3.6, we have

$$\lim_{n\to\infty} P(X \le x_n) = \lim_{n\to\infty} P(C_n) = P\left(\lim_{n\to\infty} C_n\right)$$
$$= P\left(\bigcap_{n=1}^{\infty} C_n\right) = P(X \le x_0) = F(x_0).$$

We now need to replace the limit of the sequence with the limit of the probability function.

()

Theorem 1.5.1 (continued 4)

Theorem 1.5.1. Let X be a random variable with cumulative distribution function F(x). Then

(d)
$$\lim_{x\downarrow x_0} F(x) = \lim_{x\to x_0^+} F(x) = F(x_0)$$
 (i.e., F is right continuous).

Proof (continued). Let $\varepsilon > 0$. Then there is $N \in \mathbb{N}$ such that for all $n \ge N$ we have $|P(X \le x_n) - F(x_0)| < \varepsilon$, or $|F(x_n) - F(x_0)| < \varepsilon$. By part (a), $F(x_n) \ge F(x_0)$ so we have $0 \le F(x_n) - F(x_0) < \varepsilon$ for all $n \ge N$. Let $x \in \mathbb{R}$ satisfy $x \ge x_0$ and $|x - x_0| = x - x_0 < \delta = 1/N$. Then $x_0 \le x < x_0 + 1/N = x_N$ and by part (a), $F(x_0) \le F(x) \le F(x_0 + 1/N)$. Hence

$$0 \le F(x) - F(x_0) \le F(x_0 + 1/N) - F(x_0) < \varepsilon.$$

So for $\varepsilon > 0$ there is $\delta > 0$ such that if $|x - x_0| < \delta$ then $0 \le F(x) = F(x_0) < \varepsilon$. That is, by definition, $\lim_{x \to x_0^+} F(x) - F(x_0)$, as claimed.

Theorem 1.5.1 (continued 4)

Theorem 1.5.1. Let X be a random variable with cumulative distribution function F(x). Then

(d)
$$\lim_{x\downarrow x_0} F(x) = \lim_{x\to x_0^+} F(x) = F(x_0)$$
 (i.e., F is right continuous).

Proof (continued). Let $\varepsilon > 0$. Then there is $N \in \mathbb{N}$ such that for all $n \ge N$ we have $|P(X \le x_n) - F(x_0)| < \varepsilon$, or $|F(x_n) - F(x_0)| < \varepsilon$. By part (a), $F(x_n) \ge F(x_0)$ so we have $0 \le F(x_n) - F(x_0) < \varepsilon$ for all $n \ge N$. Let $x \in \mathbb{R}$ satisfy $x \ge x_0$ and $|x - x_0| = x - x_0 < \delta = 1/N$. Then $x_0 \le x < x_0 + 1/N = x_N$ and by part (a), $F(x_0) \le F(x) \le F(x_0 + 1/N)$. Hence

$$0 \leq F(x) - F(x_0) \leq F(x_0 + 1/N) - F(x_0) < \varepsilon.$$

So for $\varepsilon > 0$ there is $\delta > 0$ such that if $|x - x_0| < \delta$ then $0 \le F(x) = F(x_0) < \varepsilon$. That is, by definition, $\lim_{x \to x_0^+} F(x) - F(x_0)$, as claimed.

Theorem 1.5.2. Let X be a random variable with cumulative distribution function F_X . Then for a < b we have $P(a < X) \le b) = F_X(b) - F_X(a)$.

Proof. Since $\{X \le b\} = \{X \le a\} \cup \{a < X \le b\}$, then by finite additivity of probability, $P(X \le b) = P(X \le a) + P(a < X \le b)$ or

 $P(a < X \le b) = P(X \le b) - P(X \le a) = F_X(b) - F_X(a),$

as claimed.

Theorem 1.5.2. Let X be a random variable with cumulative distribution function F_X . Then for a < b we have $P(a < X) \le b) = F_X(b) - F_X(a)$.

Proof. Since $\{X \le b\} = \{X \le a\} \cup \{a < X \le b\}$, then by finite additivity of probability, $P(X \le b) = P(X \le a) + P(a < X \le b)$ or

$$P(a < X \le b) = P(X \le b) - P(X \le a) = F_X(b) - F_X(a),$$

as claimed.

Theorem 1.5.3. For random variable X, $P(X = x) = F_X(x) - F_X(x^-)$ for all $x \in \mathbb{R}$, where $F_X(x^-) = \lim_{z \to x^-} F_X(z)$.

Proof. For any $x \in \mathbb{R}$ we have $\{x\} = \bigcap_{n=1}^{\infty} (x - 1/n, x]$ and the sequence of sets (x - 1/N, x] is nonincreasing so that $\lim_{n\to\infty} (x - 1/N, x] = \{x\}$. So by the Continuity of the Probability Functions, Theorem 1.3.6,

$$P(X = x) = P\left(\lim_{n \to \infty} (x - 1/n, x]\right) = \lim_{n \to \infty} P((x - 1/n, x])$$

=
$$\lim_{n \to \infty} (F_X(x) - F_X(x - 1/n)) \text{ by Theorem 1.5.2}$$

=
$$F_X(x) - \lim_{n \to \infty} F_X(x - 1/x). \quad (*)$$

We now need to replace the limit of the sequence with the limit of the cumulative density function.

Theorem 1.5.3. For random variable X, $P(X = x) = F_X(x) - F_X(x^-)$ for all $x \in \mathbb{R}$, where $F_X(x^-) = \lim_{z \to x^-} F_X(z)$.

Proof. For any $x \in \mathbb{R}$ we have $\{x\} = \bigcap_{n=1}^{\infty} (x - 1/n, x]$ and the sequence of sets (x - 1/N, x] is nonincreasing so that $\lim_{n\to\infty} (x - 1/N, x] = \{x\}$. So by the Continuity of the Probability Functions, Theorem 1.3.6,

$$P(X = x) = P\left(\lim_{n \to \infty} (x - 1/n, x]\right) = \lim_{n \to \infty} P((x - 1/n, x])$$

=
$$\lim_{n \to \infty} (F_X(x) - F_X(x - 1/n)) \text{ by Theorem 1.5.2}$$

=
$$F_X(x) - \lim_{n \to \infty} F_X(x - 1/x). \quad (*)$$

We now need to replace the limit of the sequence with the limit of the cumulative density function.

9 / 10

Theorem 1.5.3 (continued)

Theorem 1.5.3. For random variable X, $P(X = x) = F_X(x) - F_X(x^-)$ for all $x \in \mathbb{R}$, where $F_X(x^-) = \lim_{z \to x^-} F_X(z)$.

Proof (continued). Since F_X is monotone then $\lim_{z\to x^-} F_X(z)$ exists for

all $x \in \mathbb{R}$ (see my Analysis 1 notes on 4.2. Monotone and Inverse Functions, Theorem 4-13). Let $\varepsilon > 0$. Since $\lim_{z \to x^-} F_X(z)$ exists, say $\lim_{z \to x^-} F_X(z) = L$, then there exists $\delta > 0$ such that if $0 < x - z < \delta$ then $|F_X(x) - L| < \varepsilon$.

Theorem 1.5.3 (continued)

Theorem 1.5.3. For random variable X, $P(X = x) = F_X(x) - F_X(x^-)$ for all $x \in \mathbb{R}$, where $F_X(x^-) = \lim_{z \to x^-} F_X(z)$.

Proof (continued). Since F_X is monotone then $\lim_{z\to x^-} F_X(z)$ exists for

all $x \in \mathbb{R}$ (see my Analysis 1 notes on 4.2. Monotone and Inverse Functions, Theorem 4-13). Let $\varepsilon > 0$. Since $\lim_{z \to x^-} F_X(z)$ exists, say $\lim_{z \to x^-} F_X(z) = L$, then there exists $\delta > 0$ such that if $0 < x - z < \delta$ then $|F_X(x) - L| < \varepsilon$. Let $N \in \mathbb{N}$ satisfy $N > 1/\delta$. Then for $n \ge N$ we have $0 < x - (x - 1/n) = 1/n \le 1/N < \delta$ and so $|F_X(x - 1/n) - L| < \varepsilon$. Therefore, by the definition of $\lim_{n \to \infty} F_X(x - 1/n) = L$, we have $\lim_{n \to \infty} F_X(x - 1/n) = L = \lim_{z \to x^-} F_X(z)$. Combining this with (*) gives $P(X = x) = F_X(x) - \lim_{z \to x^-} F_X(z) = F_X(x) - F_X(x^-)$, as claimed. \Box

Theorem 1.5.3 (continued)

Theorem 1.5.3. For random variable X, $P(X = x) = F_X(x) - F_X(x^-)$ for all $x \in \mathbb{R}$, where $F_X(x^-) = \lim_{z \to x^-} F_X(z)$.

Proof (continued). Since F_X is monotone then $\lim_{z\to x^-} F_X(z)$ exists for

all $x \in \mathbb{R}$ (see my Analysis 1 notes on 4.2. Monotone and Inverse Functions, Theorem 4-13). Let $\varepsilon > 0$. Since $\lim_{z \to x^-} F_X(z)$ exists, say $\lim_{z \to x^-} F_X(z) = L$, then there exists $\delta > 0$ such that if $0 < x - z < \delta$ then $|F_X(x) - L| < \varepsilon$. Let $N \in \mathbb{N}$ satisfy $N > 1/\delta$. Then for $n \ge N$ we have $0 < x - (x - 1/n) = 1/n \le 1/N < \delta$ and so $|F_X(x - 1/n) - L| < \varepsilon$. Therefore, by the definition of $\lim_{n \to \infty} F_X(x - 1/n) = L$, we have $\lim_{n \to \infty} F_X(x - 1/n) = L = \lim_{z \to x^-} F_X(z)$. Combining this with (*) gives $P(X = x) = F_X(x) - \lim_{z \to x^-} F_X(z) = F_X(x) - F_X(x^-)$, as claimed. \Box