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Theorem 1.8.1 (continued 1)

Proof (continued). This is done in Theorem 4.10.2 of my online notes
for a class on Measure Theory Based Probability (not a formal ETSU
class) on 4.10. Expectation; the necessary background is Real Analysis 1
and 2 (MATH 5210/5220). . . at least it doesn't require functional analysis!
Since >, cs, 18(x)|px(x) converges, it follows from the Rearrangement
Theorem for Absolutely Convergent Series then

Do lepx() =, >
xESx yESy {xeSxlg(x)=y}
since {x e R|xeSx} ={xeR|seSx,g(x)#0}
U{x e R| x € Sx, g(x) =0}

g (x)|px(x)

= > > lylpx(x)
y€Sy {xeSxX|g(x)=y}
= > D

y€Sy  {xe€Sx|g(x)=y}
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Theorem 1.8.1

Theorem 1.8.1. Let X be a random variable and let Y = g(X) for some
function g.
(a) Suppose X is continuous with probability density function
fe(x). If
|ttt ox < o
then the expectation of Y exists and is
E(Y) = [~ g(x)fx(x) dx.

(b) Suppose X is a discrete random variable with probability
mass function px(x). Suppose the support of X is denoted
by Sx. If 3 cs, 18(x)[px(x) < oo, then the expectation of
Y exists and it is given by E(Y) =3_ s g(x)px(x).

Proof. The text states (page 62): "“The proof of the continuous case
requires some advanced results in analysis..."
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Theorem 1.8.1 (continued 2)

Proof (continued).

o lepx(x) = Dol D]

xeSx yeSy  {x€Sx|g(x)=y}

= Y Iylev(y)

yESy

px(x)

where the last equality holds since
py(y) = P(Y =y) = P(g(X) =y) = P({x € X | g(x) = y})
=px({x e X[ g(x) =y}) = px({x € X | g(x) = y})
= > px(x).
{xeSxlg(x)=y}

Now ersx g(x)px(x), and so ZyESY ypy(y), converge absolutely by
hypothesis (and hence converge by “The Absolute Convergence Test”
mentioned above).
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Theorem 1.8.1 (continued 3)

Proof (continued). So we similarly have

EN =Y ywN=>v> v >,

yESy yeSy yeSy {xcSx|g(x)=y}

=Y 3 gpx(x) = g(x)px(x),

yESy {xeSxlg(x)=y} xE€Sx

px(x)

as claimed.

O
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Exercise 1.8.9 (continued 1)

Solution (continued).

[ 1
/ lg(x)|fx(x)dx =--- = lim / 2dx =2 < o0,
— 0 a—0t J,
as required. Next, E(1/X) = / g(x)fx(x) dx = 2, as above. O
—00

(b) Since the support of X is 0 < x < 1 then the support of Y =1/X is
l1<y<oo. Thecdfof Y =1/Xis

fr(y)=P(Y <y)=P(1/X<y)=P(X >1/y)

=1-P(X<1/y)=1-P(X<1/y)
where the last equality holds since P(X = 1/y) = 0 because we have a

continuous random variable.
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Exercise 1.8.9

Exercise 1.8.9

Exercise 1.8.9. Let f(x) = 2x, 0 < x < 1, zero elsewhere, be the pdf of
X.

(a) Compute E(1/X).

(b) Find the cdf and the pdf of Y =1/X.

(c) Compute E(Y) directly from the pdf of Y.

Solution. (a) We take g(x) = 1/x and apply Theorem 1.8.1(a). First,
notice that

/_O; yg(x)\fx(x)dx:/:Kl‘f(x)dx:/:w”/ol <§2x) dx

+/ 0 dx
1

L, x L/ x
= / (2—) dx = lim / <2—> dx since we have an improper integral
0 X a—0t J,

X
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Exercise 1.8.9

Exercise 1.8.9 (continued 2)

Solution (continued).
Now for 1 < y < oo we have 0 < 1/y <1 and so

1]y 0 1y 1
P(X <1]y) :/ f(x)dx:/ 0dx—|—/0 2x dx = 0+x°|y/" = 1/y2.

—0o0 —oQ

Therefore the cdf of Y =1/X is Fy(y) =1— P(X <1/y)=1—1/y? for
1 <y < o0o. The pdf of Y is then

fY(Y):diy[FY()/)]diy[l—l/ﬁ]:Z/ﬁ, 1<y < oo O

(c) With pdf f,(y) = 2/y3 from part (b), we have the expectation

E(Y)Z/looyfv(y)dyz/looy<%> dy:/loo%dy

-2 ) -2 =2
= — = ||m - — — = 2,
Y Ih b—o0 b 1
in agreement with part (a). O
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Theorem 1.8.2

Theorem 1.8.2. Let g1(X) and g»2(X) be functions of a random variable
X. Suppose the expectations of g1(X) and g»(X) exist. Then for any
constants k; and ky the expectation of ki g1(X) + kogo(X) exists and it is
given by

E(kig1(X) + koga(X)) = ki1 E(g1(X)) + k2 E(g2(X)).
Proof. For the continuous case, we have by the Triangle Inequality on R

/ " () + hoga(x) i (F) e < / " (allg (0] + [kallg2() ) fe(x) o

—0o — 00

- rm/m 2100l (x) dix + \kz\/oo 122(x)lfx (x) dx < o0

where the boundedness follows by the hypothesis that the expectations of
g1(X) and go(X) exist. Therefore the expectation of kigi(X) + koga(X) is
defined.
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Theorem 1.8.2 (continued 2)

Theorem 1.8.2. Let g1(X) and g»2(X) be functions of a random variable
X. Suppose the expectations of g1(X) and g»(X) exist. Then for any
constants k; and ky the expectation of ki g1(X) + kogo(X) exists and it is
given by

E(kig1(X) + koga(X)) = kiE(g1(X)) + k2E(g2(X)).

Proof (continued). Therefore the expectation of kjgi(X) + koga(X) is
defined. We now have by the absolute summability and the
Rearrangement Theorem for Absolutely Convergent Series that

E(kigi(x) + kogo(x)) = Z (kig1(x) + ksga(x))fx(x)

xE€Sx

=k Z g1(x)fx(x) + ko Z 82(x)fx (x)

xESx xESx
= kiE(g1(x)) + k2E(g2(X)),
as claimed. O
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Theorem 1.8.2 (continued 1)

Proof (continued). We now have, by the linearity of the integral,

Ellg(X) + hogaX)) = [ (laga(x) + koga(x)) () o
s /_OO a1()fx (x) dx + ko /_oo 2>(x)fx (x) dx

= kiE(g1(X)) + k2E(g2(X)),
as claimed.
For the discrete case, by the Triangle Inequality on R we have

Y lkigi(x) + keg2(X)Ifx(x) < Y (lkallga(x)] + lkallg2(x) ) fx (x)

x€Sx x€Sx

=kl D la()x(x) + kel Y lg2(x)fx(x) < o0
xESx x€8x
where the boundedness follows by the hypothesis that the expectations of
g1(X) and g»(X) exist.
0
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Exercise 1.8.7

Exercise 1.8.7. Let X have the pdf f(x) = 3x?, 0 < x < 1, zero
elsewhere. Consider a random rectangle where sides are X and (1 — X).
Determine the expected value of the area of the rectangle.

Solution. We let A= X — X? be the random variable representing the
area of the rectangle. By Theorem 1.8.2 we have
E(A) = E(X — X?) = E(X) — E(X?) where

1

00 1 1
E(X) = / xf(x), dx = / x(3x?) dx = / 3x3 dx = §X4 _3
—00 0 0 4 |, 4
and by Theorem 1.8.1(a)
e} 1 1 3 1 3
E(X?) :/ x*f(x) dx:/ x?(3x?) dx:/ 3xtdx = =x°| ==,
—0 0 0 5 | 5

So the expected area is E(A) = E(X) — E(X?)=3/4—-3/5=3/20. [
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