Mathematical Statistics 1

Chapter 1. Introduction to Probability

1.8. Expectation of a Random Variables-Proofs of Theorems

Table of contents

(1) Theorem 1.8.1
(2) Exercise 1.8.9
(3) Theorem 1.8.2
(4) Exercise 1.8.7

Theorem 1.8.1

Theorem 1.8.1. Let X be a random variable and let $Y=g(X)$ for some function g.
(a) Suppose X is continuous with probability density function $f_{X}(x)$. If

$$
\int_{-\infty}^{\infty}|g(x)| f_{X}(x) d x<\infty
$$

then the expectation of Y exists and is
$E(Y)=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$.
(b) Suppose X is a discrete random variable with probability mass function $p_{X}(x)$. Suppose the support of X is denoted by \mathcal{S}_{X}. If $\sum_{x \in \mathcal{S}_{X}}|g(x)| p_{X}(x)<\infty$, then the expectation of Y exists and it is given by $E(Y)=\sum_{x \in \mathcal{S}_{X}} g(x) p_{X}(x)$.

Proof. The text states (page 62): "The proof of the continuous case requires some advanced results in analysis.

Theorem 1.8.1

Theorem 1.8.1. Let X be a random variable and let $Y=g(X)$ for some function g.
(a) Suppose X is continuous with probability density function $f_{X}(x)$. If

$$
\int_{-\infty}^{\infty}|g(x)| f_{X}(x) d x<\infty
$$

then the expectation of Y exists and is

$$
E(Y)=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

(b) Suppose X is a discrete random variable with probability mass function $p_{X}(x)$. Suppose the support of X is denoted by \mathcal{S}_{X}. If $\sum_{x \in \mathcal{S}_{X}}|g(x)| p_{X}(x)<\infty$, then the expectation of Y exists and it is given by $E(Y)=\sum_{x \in \mathcal{S}_{X}} g(x) p_{X}(x)$.

Proof. The text states (page 62): "The proof of the continuous case requires some advanced results in analysis. . ."

Theorem 1.8.1 (continued 1)

Proof (continued). This is done in Theorem 4.10.2 of my online notes for a class on Measure Theory Based Probability (not a formal ETSU class) on 4.10. Expectation; the necessary background is Real Analysis 1 and 2 (MATH 5210/5220). . . at least it doesn't require functional analysis! Since $\sum_{x \in \mathcal{S}_{X}}|g(x)| p_{X}(x)$ converges, it follows from the Rearrangement Theorem for Absolutely Convergent Series then

Theorem 1.8.1 (continued 1)

Proof (continued). This is done in Theorem 4.10.2 of my online notes for a class on Measure Theory Based Probability (not a formal ETSU class) on 4.10. Expectation; the necessary background is Real Analysis 1 and 2 (MATH 5210/5220). . . at least it doesn't require functional analysis! Since $\sum_{x \in \mathcal{S}_{X}}|g(x)| p_{X}(x)$ converges, it follows from the Rearrangement Theorem for Absolutely Convergent Series then

$$
\left.\begin{array}{l}
\sum_{x \in \mathcal{S}_{X}}\left|g(x) p_{X}(x)=\sum_{y \in \mathcal{S}_{Y}} \sum_{\left\{x \in \mathcal{S}_{X} \mid g(x)=y\right\}}\right| g(x) \mid p_{X}(x) \\
\text { since }\left\{x \in \mathbb{R} \mid x \in \mathcal{S}_{X}\right\}=\left\{x \in \mathbb{R} \mid s \in \mathcal{S}_{X}, g(x) \neq 0\right\} \\
\\
\cup\left\{x \in \mathbb{R} \mid x \in \mathcal{S}_{X}, g(x)=0\right\} \\
= \\
=\sum_{y \in \mathcal{S}_{Y}} \sum_{\left\{x \in \mathcal{S}_{X} X \mid g(x)=y\right\}}|y| p_{X}(x) \\
=
\end{array} \sum_{y \in \mathcal{S}_{Y}}|y| \sum_{\left\{x \in \mathcal{S}_{X} \mid g(x)=y\right\}} p_{X}(x)\right\}
$$

Theorem 1.8.1 (continued 2)

Proof (continued).

$$
\begin{aligned}
\sum_{x \in \mathcal{S}_{X}} \mid g(x) p_{X}(x) & =\sum_{y \in \mathcal{S}_{Y}}|y| \sum_{\left\{x \in \mathcal{S}_{X} \mid g(x)=y\right\}} p_{X}(x) \\
& =\sum_{y \in \mathcal{S}_{Y}}|y| p_{Y}(y)
\end{aligned}
$$

where the last equality holds since

$$
\begin{gathered}
p_{Y}(y)=P(Y=y)=P(g(X)=y)=P(\{x \in X \mid g(x)=y\}) \\
=p_{X}(\{x \in X \mid g(x)=y\})=p_{X}(\{x \in X \mid g(x)=y\}) \\
=\sum_{\left\{x \in \mathcal{S}_{X} \mid g(x)=y\right\}} p_{X}(x) .
\end{gathered}
$$

Now $\sum_{x \in \mathcal{S}_{X}} g(x) p_{X}(x)$, and so $\sum_{y \in \mathcal{S}_{Y}} y p_{Y}(y)$, converge absolutely by hypothesis (and hence converge by "The Absolute Convergence Test" mentioned above).

Theorem 1.8.1 (continued 2)

Proof (continued).

$$
\begin{aligned}
\sum_{x \in \mathcal{S}_{X}} \mid g(x) p_{X}(x) & =\sum_{y \in \mathcal{S}_{Y}}|y| \sum_{\left\{x \in \mathcal{S}_{X} \mid g(x)=y\right\}} p_{X}(x) \\
& =\sum_{y \in \mathcal{S}_{Y}}|y| p_{Y}(y)
\end{aligned}
$$

where the last equality holds since

$$
\begin{gathered}
p_{Y}(y)=P(Y=y)=P(g(X)=y)=P(\{x \in X \mid g(x)=y\}) \\
=p_{X}(\{x \in X \mid g(x)=y\})=p_{X}(\{x \in X \mid g(x)=y\}) \\
=\sum_{\left\{x \in \mathcal{S}_{X} \mid g(x)=y\right\}} p_{X}(x) .
\end{gathered}
$$

Now $\sum_{x \in \mathcal{S}_{X}} g(x) p_{X}(x)$, and so $\sum_{y \in \mathcal{S}_{Y}} y p_{Y}(y)$, converge absolutely by hypothesis (and hence converge by "The Absolute Convergence Test" mentioned above).

Theorem 1.8.1 (continued 3)

Proof (continued). So we similarly have

$$
\begin{gathered}
E(Y)=\sum_{y \in \mathcal{S}_{Y}} y p_{Y}(y)=\sum_{y \in \mathcal{S}_{Y}} y \sum_{y \in \mathcal{S}_{Y}} y \sum_{\left\{x \in \mathcal{S}_{X} \mid g(x)=y\right\}} p_{X}(x) \\
=\sum_{y \in \mathcal{S}_{Y}} \sum_{\left\{x \in \mathcal{S}_{X} \mid g(x)=y\right\}} g(x) p_{X}(x)=\sum_{x \in \mathcal{S}_{X}} g(x) p_{X}(x),
\end{gathered}
$$

as claimed.

Exercise 1.8.9

Exercise 1.8.9. Let $f(x)=2 x, 0<x<1$, zero elsewhere, be the pdf of X.
(a) Compute $E(1 / X)$.
(b) Find the cdf and the pdf of $Y=1 / X$.
(c) Compute $E(Y)$ directly from the pdf of Y.

Solution. (a) We take $g(x)=1 / x$ and apply Theorem 1.8.1(a). First, notice that

$=\int_{0}^{1}\left(2 \frac{x}{x}\right) d x=\lim _{a \rightarrow 0^{+}} \int_{a}^{1}\left(2 \frac{x}{x}\right) d x$ since we have an improper integral

Exercise 1.8.9

Exercise 1.8.9. Let $f(x)=2 x, 0<x<1$, zero elsewhere, be the pdf of X.
(a) Compute $E(1 / X)$.
(b) Find the cdf and the pdf of $Y=1 / X$.
(c) Compute $E(Y)$ directly from the pdf of Y.

Solution. (a) We take $g(x)=1 / x$ and apply Theorem 1.8.1(a). First, notice that

$$
\begin{gathered}
\int_{-\infty}^{\infty}|g(x)| f_{X}(x) d x=\int_{-\infty}^{\infty} \frac{1}{|x|} f(x) d x=\int_{-\infty}^{0} 0 d x+\int_{0}^{1}\left(\frac{1}{x} 2 x\right) d x \\
+\int_{1}^{\infty} 0 d x
\end{gathered}
$$

$=\int_{0}^{1}\left(2 \frac{x}{x}\right) d x=\lim _{a \rightarrow 0^{+}} \int_{a}^{1}\left(2 \frac{x}{x}\right) d x$ since we have an improper integral

Exercise 1.8.9 (continued 1)

Solution (continued).

$$
\int_{-\infty}^{\infty}|g(x)| f_{X}(x) d x=\cdots=\lim _{a \rightarrow 0^{+}} \int_{a}^{1} 2 d x=2<\infty
$$

as required. Next, $E(1 / X)=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x=2$, as above.
(b) Since the support of X is $0<x<1$ then the support of $Y=1 / X$ is $1<y<\infty$. The cdf of $Y=1 / X$ is

$$
\begin{aligned}
f_{Y}(y) & =P(Y \leq y)=P(1 / X \leq y)=P(X \geq 1 / y) \\
& =1-P(X<1 / y)=1-P(X \leq 1 / y)
\end{aligned}
$$

where the last equality holds since $P(X=1 / y)=0$ because we have a continuous random variable.

Exercise 1.8.9 (continued 1)

Solution (continued).

$$
\int_{-\infty}^{\infty}|g(x)| f_{X}(x) d x=\cdots=\lim _{a \rightarrow 0^{+}} \int_{a}^{1} 2 d x=2<\infty
$$

as required. Next, $E(1 / X)=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x=2$, as above.
(b) Since the support of X is $0<x<1$ then the support of $Y=1 / X$ is $1<y<\infty$. The cdf of $Y=1 / X$ is

$$
\begin{aligned}
f_{Y}(y) & =P(Y \leq y)=P(1 / X \leq y)=P(X \geq 1 / y) \\
& =1-P(X<1 / y)=1-P(X \leq 1 / y)
\end{aligned}
$$

where the last equality holds since $P(X=1 / y)=0$ because we have a continuous random variable.

Exercise 1.8.9 (continued 2)

Solution (continued).

Now for $1<y<\infty$ we have $0<1 / y<1$ and so
$P(X \leq 1 / y)=\int_{-\infty}^{1 / y} f(x) d x=\int_{-\infty}^{0} 0 d x+\int_{0}^{1 / y} 2 x d x=0+\left.x^{2}\right|_{0} ^{1 / y}=1 / y^{2}$.
Therefore the cdf of $Y=1 / X$ is $F_{Y}(y)=1-P(X \leq 1 / y)=1-1 / y^{2}$ for $1<y<\infty$. The pdf of Y is then
$f_{Y}(y)=\frac{d}{d y}\left[F_{Y}(y)\right] \frac{d}{d y}\left[1-1 / y^{2}\right]=2 / y^{3}, 1<y<\infty$.
(c) With pdf $f_{y}(y)=2 / y^{3}$ from part (b), we have the expectation

$$
\begin{gathered}
E(Y)=\int_{1}^{\infty} y f_{Y}(y) d y=\int_{1}^{\infty} y\left(\frac{2}{y^{3}}\right) d y=\int_{1}^{\infty} \frac{2}{y^{2}} d y \\
=\left.\frac{-2}{y}\right|_{1} ^{\infty}=\lim _{b \rightarrow \infty}\left(\frac{-2}{b}-\frac{-2}{1}\right)=2
\end{gathered}
$$

in agreement with part (a).

Exercise 1.8.9 (continued 2)

Solution (continued).

Now for $1<y<\infty$ we have $0<1 / y<1$ and so
$P(X \leq 1 / y)=\int_{-\infty}^{1 / y} f(x) d x=\int_{-\infty}^{0} 0 d x+\int_{0}^{1 / y} 2 x d x=0+\left.x^{2}\right|_{0} ^{1 / y}=1 / y^{2}$.
Therefore the cdf of $Y=1 / X$ is $F_{Y}(y)=1-P(X \leq 1 / y)=1-1 / y^{2}$ for $1<y<\infty$. The pdf of Y is then
$f_{Y}(y)=\frac{d}{d y}\left[F_{Y}(y)\right] \frac{d}{d y}\left[1-1 / y^{2}\right]=2 / y^{3}, 1<y<\infty$.
(c) With pdf $f_{y}(y)=2 / y^{3}$ from part (b), we have the expectation

$$
\begin{gathered}
E(Y)=\int_{1}^{\infty} y f_{Y}(y) d y=\int_{1}^{\infty} y\left(\frac{2}{y^{3}}\right) d y=\int_{1}^{\infty} \frac{2}{y^{2}} d y \\
=\left.\frac{-2}{y}\right|_{1} ^{\infty}=\lim _{b \rightarrow \infty}\left(\frac{-2}{b}-\frac{-2}{1}\right)=2
\end{gathered}
$$

in agreement with part (a).

Theorem 1.8.2

Theorem 1.8.2. Let $g_{1}(X)$ and $g_{2}(X)$ be functions of a random variable X. Suppose the expectations of $g_{1}(X)$ and $g_{2}(X)$ exist. Then for any constants k_{1} and k_{2} the expectation of $k_{1} g_{1}(X)+k_{2} g_{2}(X)$ exists and it is given by

$$
E\left(k_{1} g_{1}(X)+k_{2} g_{2}(X)\right)=k_{1} E\left(g_{1}(X)\right)+k_{2} E\left(g_{2}(X)\right) .
$$

Proof. For the continuous case, we have by the Triangle Inequality on \mathbb{R}

$$
=\left|k_{1}\right| \int_{-\infty}^{\infty}\left|g_{1}(x)\right| f_{X}(x) d x+\left|k_{2}\right| \int_{-\infty}^{\infty}\left|g_{2}(x)\right| f_{X}(x) d x<\infty
$$

where the boundedness follows by the hypothesis that the expectations of $g_{1}(X)$ and $g_{2}(X)$ exist. Therefore the expectation of $k_{1} g_{1}(X)+k_{2} g_{2}(X)$ is defined.

Theorem 1.8.2

Theorem 1.8.2. Let $g_{1}(X)$ and $g_{2}(X)$ be functions of a random variable X. Suppose the expectations of $g_{1}(X)$ and $g_{2}(X)$ exist. Then for any constants k_{1} and k_{2} the expectation of $k_{1} g_{1}(X)+k_{2} g_{2}(X)$ exists and it is given by

$$
E\left(k_{1} g_{1}(X)+k_{2} g_{2}(X)\right)=k_{1} E\left(g_{1}(X)\right)+k_{2} E\left(g_{2}(X)\right) .
$$

Proof. For the continuous case, we have by the Triangle Inequality on \mathbb{R}

$$
\begin{gathered}
\int_{-\infty}^{\infty}\left|f_{1} g_{1}(x)+k_{2} g_{2}(x)\right| f_{X}(f) d x \leq \int_{-\infty}^{\infty}\left(\left|k_{1}\right|\left|g_{1}(x)\right|+\left|k_{2}\right|\left|g_{2}(x)\right|\right) f_{X}(x) d x \\
\quad=\left|k_{1}\right| \int_{-\infty}^{\infty}\left|g_{1}(x)\right| f_{X}(x) d x+\left|k_{2}\right| \int_{-\infty}^{\infty}\left|g_{2}(x)\right| f_{X}(x) d x<\infty
\end{gathered}
$$

where the boundedness follows by the hypothesis that the expectations of $g_{1}(X)$ and $g_{2}(X)$ exist. Therefore the expectation of $k_{1} g_{1}(X)+k_{2} g_{2}(X)$ is defined.

Theorem 1.8.2 (continued 1)

Proof (continued). We now have, by the linearity of the integral,

$$
\begin{gathered}
E\left(k_{1} g_{1}(X)+k_{2} g_{2}(X)\right)=\int_{-\infty}^{\infty}\left(k_{1} g_{1}(x)+k_{2} g_{2}(x)\right) f_{X}(x) d x \\
=k_{1} \int_{-\infty}^{\infty} g_{1}(x) f_{X}(x) d x+k_{2} \int_{-\infty}^{\infty} g_{2}(x) f_{X}(x) d x \\
=k_{1} E\left(g_{1}(X)\right)+k_{2} E\left(g_{2}(X)\right),
\end{gathered}
$$

as claimed.
For the discrete case, by the Triangle Inequality on \mathbb{R} we have

$$
\sum_{x \in \mathcal{S}_{X}}\left|k_{1} g_{1}(x)+k_{2} g_{2}(x)\right| f_{X}(x) \leq \sum_{x \in \mathcal{S}_{X}}\left(\left|k_{1}\right|\left|g_{1}(x)\right|+\left|k_{2}\right|\left|g_{2}(x)\right|\right) f_{X}(x)
$$

$$
=\left|k_{1}\right| \sum_{x \in \mathcal{S}_{X}}\left|g_{1}(x)\right| f_{X}(x)+\left|k_{x}\right| \sum_{x \in \mathcal{S}_{X}}\left|g_{2}(x)\right| f_{X}(x)<\infty
$$

where the boundedness follows by the hypothesis that the expectations of $g_{1}(X)$ and $g_{2}(X)$ exist.

Theorem 1.8.2 (continued 1)

Proof (continued). We now have, by the linearity of the integral,

$$
\begin{gathered}
E\left(k_{1} g_{1}(X)+k_{2} g_{2}(X)\right)=\int_{-\infty}^{\infty}\left(k_{1} g_{1}(x)+k_{2} g_{2}(x)\right) f_{X}(x) d x \\
=k_{1} \int_{-\infty}^{\infty} g_{1}(x) f_{X}(x) d x+k_{2} \int_{-\infty}^{\infty} g_{2}(x) f_{X}(x) d x \\
=k_{1} E\left(g_{1}(X)\right)+k_{2} E\left(g_{2}(X)\right)
\end{gathered}
$$

as claimed.
For the discrete case, by the Triangle Inequality on \mathbb{R} we have

$$
\begin{gathered}
\sum_{x \in \mathcal{S}_{X}}\left|k_{1} g_{1}(x)+k_{2} g_{2}(x)\right| f_{X}(x) \leq \sum_{x \in \mathcal{S}_{X}}\left(\left|k_{1}\right|\left|g_{1}(x)\right|+\left|k_{2}\right|\left|g_{2}(x)\right|\right) f_{X}(x) \\
=\left|k_{1}\right| \sum_{x \in \mathcal{S}_{X}}\left|g_{1}(x)\right| f_{X}(x)+\left|k_{x}\right| \sum_{x \in \mathcal{S}_{X}}\left|g_{2}(x)\right| f_{X}(x)<\infty
\end{gathered}
$$

where the boundedness follows by the hypothesis that the expectations of $g_{1}(X)$ and $g_{2}(X)$ exist.

Theorem 1.8.2 (continued 2)

Theorem 1.8.2. Let $g_{1}(X)$ and $g_{2}(X)$ be functions of a random variable X. Suppose the expectations of $g_{1}(X)$ and $g_{2}(X)$ exist. Then for any constants k_{1} and k_{2} the expectation of $k_{1} g_{1}(X)+k_{2} g_{2}(X)$ exists and it is given by

$$
E\left(k_{1} g_{1}(X)+k_{2} g_{2}(X)\right)=k_{1} E\left(g_{1}(X)\right)+k_{2} E\left(g_{2}(X)\right)
$$

Proof (continued). Therefore the expectation of $k_{1} g_{1}(X)+k_{2} g_{2}(X)$ is defined. We now have by the absolute summability and the Rearrangement Theorem for Absolutely Convergent Series that

$$
\begin{gathered}
E\left(k_{1} g_{1}(x)+k_{2} g_{2}(x)\right)=\sum_{x \in \mathcal{S}_{X}}\left(k_{1} g_{1}(x)+k_{s} g_{2}(x)\right) f_{X}(x) \\
=k_{1} \sum_{x \in \mathcal{S}_{X}} g_{1}(x) f_{X}(x)+k_{2} \sum_{x \in \mathcal{S}_{X}} g_{2}(x) f_{X}(x) \\
=k_{1} E\left(g_{1}(x)\right)+k_{2} E\left(g_{2}(X)\right)
\end{gathered}
$$

as claimed.

Exercise 1.8.7

Exercise 1.8.7. Let X have the pdf $f(x)=3 x^{2}, 0<x<1$, zero elsewhere. Consider a random rectangle where sides are X and $(1-X)$. Determine the expected value of the area of the rectangle.

Solution. We let $A=X-X^{2}$ be the random variable representing the area of the rectangle. By Theorem 1.8.2 we have
$E(A)=E\left(X-X^{2}\right)=E(X)-E\left(X^{2}\right)$ where

$$
E(X)=\int_{-\infty}^{\infty} x f(x), d x=\int_{0}^{1} x\left(3 x^{2}\right) d x=\int_{0}^{1} 3 x^{3} d x=\left.\frac{3}{4} x^{4}\right|_{0} ^{1}=\frac{3}{4}
$$

and by Theorem 1.8.1(a)

$$
E\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{0}^{1} x^{2}\left(3 x^{2}\right) d x=\int_{0}^{1} 3 x^{4} d x=\left.\frac{3}{5} x^{5}\right|_{0} ^{1}=\frac{3}{5}
$$

So the expected area is $E(A)=E(X)-E\left(X^{2}\right)=3 / 4-3 / 5=3 / 20$.

Exercise 1.8.7

Exercise 1.8.7. Let X have the pdf $f(x)=3 x^{2}, 0<x<1$, zero elsewhere. Consider a random rectangle where sides are X and $(1-X)$. Determine the expected value of the area of the rectangle.

Solution. We let $A=X-X^{2}$ be the random variable representing the area of the rectangle. By Theorem 1.8.2 we have

$$
E(A)=E\left(X-X^{2}\right)=E(X)-E\left(X^{2}\right) \text { where }
$$

$$
E(X)=\int_{-\infty}^{\infty} x f(x), d x=\int_{0}^{1} x\left(3 x^{2}\right) d x=\int_{0}^{1} 3 x^{3} d x=\left.\frac{3}{4} x^{4}\right|_{0} ^{1}=\frac{3}{4}
$$

and by Theorem 1.8.1(a)

$$
E\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{0}^{1} x^{2}\left(3 x^{2}\right) d x=\int_{0}^{1} 3 x^{4} d x=\left.\frac{3}{5} x^{5}\right|_{0} ^{1}=\frac{3}{5}
$$

So the expected area is $E(A)=E(X)-E\left(X^{2}\right)=3 / 4-3 / 5=3 / 20$.

