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1.8. Expectation of a Random Variables—Proofs of Theorems

Introduction to
Mathematical
Statistics

Mathematical Statistics 1 October 5, 2019

1/13



R —
Table of contents

© Theorem 1.8.1
© Exercise 1.8.9
© Theorem 1.8.2

@ Exercise 1.8.7

Mathematical Statistics 1 October 5, 2019 2 /13



Theorem 1.8.1

Theorem 1.8.1

Theorem 1.8.1. Let X be a random variable and let Y = g(X) for some
function g.

(a) Suppose X is continuous with probability density function

fx(x). If

| It ax < .
then the expectation of Y exists and is
E(Y) = [, g(x)f(x) ox.

(b) Suppose X is a discrete random variable with probability
mass function px(x). Suppose the support of X is denoted
by Sx. If >_ cs, [8(x)|px(x) < oo, then the expectation of
Y exists and it is given by E(Y) =3, s g(x)px(x).
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Theorem 1.8.1

Theorem 1.8.1

Theorem 1.8.1. Let X be a random variable and let Y = g(X) for some
function g.

(a) Suppose X is continuous with probability density function

fx(x). If

|ttt ox < o
then the expectation of Y exists and is
E(Y) = [, g(x)f(x) ox.

(b) Suppose X is a discrete random variable with probability
mass function px(x). Suppose the support of X is denoted
by Sx. If >_ cs, [8(x)|px(x) < oo, then the expectation of
Y exists and it is given by E(Y) =3, s g(x)px(x).

Proof. The text states (page 62): “The proof of the continuous case
requires some advanced results in analysis..."
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Theorem 1.8.1 (continued 1)

Proof (continued). This is done in Theorem 4.10.2 of my online notes
for a class on Measure Theory Based Probability (not a formal ETSU
class) on 4.10. Expectation; the necessary background is Real Analysis 1
and 2 (MATH 5210/5220). . . at least it doesn’t require functional analysis!
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Theorem 1.8.1 (continued 1)

Proof (continued). This is done in Theorem 4.10.2 of my online notes
for a class on Measure Theory Based Probability (not a formal ETSU
class) on 4.10. Expectation; the necessary background is Real Analysis 1
and 2 (MATH 5210/5220). . . at least it doesn't require functional analysis!
Since >, cs, 18(x)|px(x) converges, it follows from the Rearrangement
Theorem for Absolutely Convergent Series then

Z g (x)px(x Z Z lg(x)|px(x)
xESx yESy {xeSx|g(x)=y}
since {x eR|xeSx} ={xeR|seSx,g(x)#0}
U{x e R | x € Sx, g(x) = 0}

Z Z lylpx(x)

yESy {xeSxXlg(x)=y}

bl D ex(®)

yeSy {XESX‘g(X):y}
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Theorem 1.8.1 (continued 2)

Proof (continued).

Z lg(x)px(x) = Z |yl Z px(x)

xESx yeSy  {xeSxlg(x)=y}
= > lylpv(y)
y€Sy

where the last equality holds since
py(y) = P(Y =y) = P(g(X) = y) = P({x € X | g(x) = y})
=px({x e X[ &(x) =y}) = px({x € X | g(x) = y})

= > px(x).

{xeSxlg(x)=y}
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Theorem 1.8.1 (continued 2)

Proof (continued).

Z lg(x)px(x) = Z |yl Z px(x)

xESx yeSy  {xeSxlg(x)=y}
= > lylpv(y)
y€Sy

where the last equality holds since
py(y) = P(Y =y) = P(g(X) = y) = P({x € X [ g(x) = y})
=px({x e X[ &(x) =y}) = px({x € X | g(x) = y})
= > px(x).
{xeSxlg(x)=y}

Now >, cs, 8(x)px(x) and so 3> s ypy(y), converge absolutely by
hypothesis (and hence converge by “The Absolute Convergence Test”

mentioned above).
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Theorem 1.8.1 (continued 3)

Proof (continued). So we similarly have

EV)=> yov(W)=>_yd. v >  px(x)

yESY yeSy yeSy {xeS8x|g(x)=y}
= > > g(px(x) =D g(x)px(x),
y€Sy {xeSx|g(x)=y} x€Sx
as claimed. O
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Exercise 1.8.9

Exercise 1.8.9. Let f(x) = 2x, 0 < x < 1, zero elsewhere, be the pdf of
X.

(a) Compute E(1/X).
(b) Find the cdf and the pdf of Y =1/X.
(c) Compute E(Y) directly from the pdf of Y.
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Exercise 1.8.9

Exercise 1.8.9. Let f(x) = 2x, 0 < x < 1, zero elsewhere, be the pdf of
X.

(a) Compute E(1/X).
(b) Find the cdf and the pdf of Y =1/X.
(c) Compute E(Y) directly from the pdf of Y.

Solution. (a) We take g(x) = 1/x and apply Theorem 1.8.1(a). First,
notice that

/_Z |g(x)]fx(x)dx:/_z‘i’f(x)dx:/_(;de—i—/ol <izx> dx
+/1000dx

1 1
= / <2i> dx = lim / (25) dx since we have an improper integral
0 X a—0t J, X
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Exercise 1.8.9 (continued 1)

Solution (continued).

0 1
/ lg(x)|fx(x)dx =--- = lim / 2dx =2 < o0,
a

—o0 a—0t

as required. Next, E(1/X) = / g(x)fx(x) dx = 2, as above.

— 00
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Exercise 1.8.9 (continued 1)

Solution (continued).

e 1
/ lg(x)|fx(x)dx =--- = lim / 2dx =2 < o0,
—o0 a—0T J,
as required. Next, E(1/X) = / g(x)fx(x) dx = 2, as above.

(b) Since the support of X is 0 < x < 1 then the support of Y =1/X is

l1<y<oo. Thecdfof Y =1/Xis
fr(y) = P(Y <y) = P(1/X <y) = P(X > 1/y)

—1-P(X<1/y)=1—P(X <1/y)

where the last equality holds since P(X = 1/y) = 0 because we have a

continuous random variable.
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Exercise 1.8.9 (continued 2)

Solution (continued).
Now for 1 < y < oo we have 0 < 1/y < 1 and so

1y 0 1y 1
P(X < 1/y):/ f(x)dxz/ de—|—/0 2x dx = 0+x%|y/Y = 1/y?

—0o0 —00

Therefore the cdf of Y =1/X is Fy(y) =1—-P(X < 1/y)=1-1/y? for
1 <y < 0o. The pdf of Y is then

fv(y)=:y[Fy(y)]:y[l—l/ﬁ]:z/yf‘, 1<y< . O
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Exercise 1.8.9 (continued 2)

Solution (continued).
Now for 1 < y < oo we have 0 < 1/y < 1 and so

1y 0 1y 1
P(X < 1/y):/ f(x)dX:/ de—|—/0 2x dx = 0+x%|y/Y = 1/y?

Therefore the cdf of Y =1/X is Fy(y) =1—-P(X < 1/y)=1-1/y? for
1 <y < 0o. The pdf of Y is then

fv(y)=:y[Fy(y)]:y[l—l/ﬁ]:z/yf‘, 1<y< . O

(c) With pdf f,(y) = 2/y3 from part (b), we have the expectation

E(Y)Z/looyfy(y)dy:/looy(yi> dy:/looyzzdy

-2 i -2 =2
= — = Im _— =
Y Ih b—oo b 1 ’
in agreement with part (a). O
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Theorem 1.8.2

Theorem 1.8.2. Let g1(X) and g»(X) be functions of a random variable
X. Suppose the expectations of g1(X) and g2(X) exist. Then for any
constants k; and kp the expectation of kig1(X) + kogo(X) exists and it is
given by

E(kigi(X) + koga(X)) = kiE(g1(X)) + kaE(g2(X)).
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Theorem 1.8.2

Theorem 1.8.2. Let g1(X) and g»(X) be functions of a random variable
X. Suppose the expectations of g1(X) and g2(X) exist. Then for any
constants k; and kp the expectation of kig1(X) + kogo(X) exists and it is
given by

E(kig1(X) + kog2(X)) = k1E(g1(X)) + k2E(g2(X)).
Proof. For the continuous case, we have by the Triangle Inequality on R

/ " lhign(x) + ko ()] fc(F) o < / " (kaller ()] + [hellga(o) ) e (x) dx

—00 —0o0

~ il [ lan(lix00) o+l [ el o < o

where the boundedness follows by the hypothesis that the expectations of
g1(X) and go(X) exist. Therefore the expectation of ki g1(X) + koga(X) is
defined.
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Theorem 1.8.2 (continued 1)

Proof (continued). We now have, by the linearity of the integral,

Ekagr(X) + kogo(X)) = /_ " (lagi(x) + kaga(x)) () dx
C /Oo 1) fx (x) dx + ko /OO (%) fx (x) dx

= ki E(g1(X)) + ko E(g2(X)),
as claimed.
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Theorem 1.8.2 (continued 1)

Proof (continued). We now have, by the linearity of the integral,

o0

E(krgr(X) + kaga(X)) = / (kuga(x) + kaga(x)) i (x) dx

— 00

C /Oo 1) fx (x) dx + ko /OO (%) fx (x) dx

= kiE(g1(X)) + k2E(g2(X)),
as claimed.
For the discrete case, by the Triangle Inequality on R we have

D kigi(x) + keg2(X)Ifx(x) < ) (lkallga(x)] + lkallg2(x) ) fx (x)

XESx XESx

= |ki| Z g1 (x)fx (x) + [ kx| Z lg2(x) | Fx (x

x€Sx xE€Sx
where the boundedness follows by the hypothesis that the expectations of
g1(X) and g»(X) exist.
0
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Theorem 1.8.2 (continued 2)

Theorem 1.8.2. Let g1(X) and g»(X) be functions of a random variable

X. Suppose the expectations of g1(X) and g2(X) exist. Then for any

constants k; and kp the expectation of kig1(X) + kogo(X) exists and it is

given by
E(kig1(X) + kog2(X)) = kiE(g1(X)) + ko E(g2(X)).

Proof (continued). Therefore the expectation of kigi(X) + koga(X) is

defined. We now have by the absolute summability and the
Rearrangement Theorem for Absolutely Convergent Series that

E(kigi(x) + koga(x)) = Y (krg1(x) + ksga(x))x(x)

XESx

=k > a()fx(x)+hk > g(x)fk(x)

xESx x€S8x

= kiE(g1(x)) + k2E(82(X)),
as claimed.
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Exercise 1.8.7

Exercise 1.8.7. Let X have the pdf f(x) = 3x2, 0 < x < 1, zero

elsewhere. Consider a random rectangle where sides are X and (1 — X).
Determine the expected value of the area of the rectangle.
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Exercise 1.8.7

Exercise 1.8.7. Let X have the pdf f(x) = 3x2, 0 < x < 1, zero
elsewhere. Consider a random rectangle where sides are X and (1 — X).
Determine the expected value of the area of the rectangle.

Solution. We let A= X — X? be the random variable representing the
area of the rectangle. By Theorem 1.8.2 we have
E(A) = E(X — X?) = E(X) — E(X?) where

1

) 1 1
E(X)= / xf(x), dx = / x(3x?) dx = / 3x3dx = §x4 _3
oo 0 0 4 |, 4
and by Theorem 1.8.1(a)
[e%S) 1 1 3 1 3
E(X?) = / x*f(x) dx = / x3(3x?) dx = / 3xtdx = =x°| ==,

So the expected area is E(A) = E(X) — E(X?)=3/4—-3/5=3/20. [J
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