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Chapter 1. Introduction to Probability
1.8. Expectation of a Random Variables—Proofs of Theorems
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Theorem 1.8.1

Theorem 1.8.1

Theorem 1.8.1. Let X be a random variable and let Y = g(X ) for some
function g .

(a) Suppose X is continuous with probability density function
fX (x). If ∫ ∞

−∞
|g(x)|fX (x) dx < ∞,

then the expectation of Y exists and is
E (Y ) =

∫∞
−∞ g(x)fX (x) dx .

(b) Suppose X is a discrete random variable with probability
mass function pX (x). Suppose the support of X is denoted
by SX . If

∑
x∈SX

|g(x)|pX (x) < ∞, then the expectation of
Y exists and it is given by E (Y ) =

∑
x∈SX

g(x)pX (x).

Proof. The text states (page 62): “The proof of the continuous case
requires some advanced results in analysis. . . ”
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Theorem 1.8.1

Theorem 1.8.1 (continued 1)

Proof (continued). This is done in Theorem 4.10.2 of my online notes
for a class on Measure Theory Based Probability (not a formal ETSU
class) on 4.10. Expectation; the necessary background is Real Analysis 1
and 2 (MATH 5210/5220). . . at least it doesn’t require functional analysis!
Since

∑
x∈SX

|g(x)|pX (x) converges, it follows from the Rearrangement
Theorem for Absolutely Convergent Series then∑

x∈SX

|g(x)pX (x) =
∑
y∈SY

∑
{x∈SX |g(x)=y}

|g(x)|pX (x)

since {x ∈ R | x ∈ SX} = {x ∈ R | s ∈ SX , g(x) 6= 0}
∪{x ∈ R | x ∈ SX , g(x) = 0}

=
∑
y∈SY

∑
{x∈SX X |g(x)=y}

|y |pX (x)

=
∑
y∈SY

|y |
∑

{x∈SX |g(x)=y}

pX (x)
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Theorem 1.8.1

Theorem 1.8.1 (continued 2)

Proof (continued).∑
x∈SX

|g(x)pX (x) =
∑
y∈SY

|y |
∑

{x∈SX |g(x)=y}

pX (x)

=
∑
y∈SY

|y |pY (y)

where the last equality holds since

pY (y) = P(Y = y) = P(g(X ) = y) = P({x ∈ X | g(x) = y})

= pX ({x ∈ X | g(x) = y}) = pX ({x ∈ X | g(x) = y})

=
∑

{x∈SX |g(x)=y}

pX (x).

Now
∑

x∈SX
g(x)pX (x), and so

∑
y∈SY

ypY (y), converge absolutely by
hypothesis (and hence converge by “The Absolute Convergence Test”
mentioned above).
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Theorem 1.8.1

Theorem 1.8.1 (continued 3)

Proof (continued). So we similarly have

E (Y ) =
∑
y∈SY

ypY (y) =
∑
y∈SY

y
∑
y∈SY

y
∑

{x∈SX |g(x)=y}

pX (x)

=
∑
y∈SY

∑
{x∈SX |g(x)=y}

g(x)pX (x) =
∑
x∈SX

g(x)pX (x),

as claimed.
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Exercise 1.8.9

Exercise 1.8.9

Exercise 1.8.9. Let f (x) = 2x , 0 < x < 1, zero elsewhere, be the pdf of
X .

(a) Compute E (1/X ).

(b) Find the cdf and the pdf of Y = 1/X .

(c) Compute E (Y ) directly from the pdf of Y .

Solution. (a) We take g(x) = 1/x and apply Theorem 1.8.1(a). First,
notice that∫ ∞

−∞
|g(x)|fX (x) dx =

∫ ∞

−∞

1

|x |
f (x) dx =

∫ 0

−∞
0 dx +

∫ 1

0

(
1

x
2x

)
dx

+

∫ ∞

1
0 dx

=

∫ 1

0

(
2
x

x

)
dx = lim

a→0+

∫ 1

a

(
2
x

x

)
dx since we have an improper integral
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Exercise 1.8.9

Exercise 1.8.9 (continued 1)

Solution (continued).∫ ∞

−∞
|g(x)|fX (x) dx = · · · = lim

a→0+

∫ 1

a
2 dx = 2 < ∞,

as required. Next, E (1/X ) =

∫ ∞

−∞
g(x)fX (x) dx = 2, as above.

(b) Since the support of X is 0 < x < 1 then the support of Y = 1/X is
1 < y < ∞. The cdf of Y = 1/X is

fY (y) = P(Y ≤ y) = P(1/X ≤ y) = P(X ≥ 1/y)

= 1− P(X < 1/y) = 1− P(X ≤ 1/y)

where the last equality holds since P(X = 1/y) = 0 because we have a
continuous random variable.
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Exercise 1.8.9

Exercise 1.8.9 (continued 2)

Solution (continued).
Now for 1 < y < ∞ we have 0 < 1/y < 1 and so

P(X ≤ 1/y) =

∫ 1/y

−∞
f (x) dx =

∫ 0

−∞
0 dx+

∫ 1/y

0
2x dx = 0+x2|1/y

0 = 1/y2.

Therefore the cdf of Y = 1/X is FY (y) = 1− P(X ≤ 1/y) = 1− 1/y2 for
1 < y < ∞. The pdf of Y is then

fY (y) =
d

dy
[FY (y)]

d

dy
[1− 1/y2] = 2/y3, 1 < y < ∞.

(c) With pdf fy (y) = 2/y3 from part (b), we have the expectation

E (Y ) =

∫ ∞

1
yfY (y) dy =

∫ ∞

1
y

(
2

y3

)
dy =

∫ ∞

1

2

y2
dy

=
−2

y

∣∣∣∣∞
1

= lim
b→∞

(
−2

b
− −2

1

)
= 2,

in agreement with part (a).
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Theorem 1.8.2

Theorem 1.8.2

Theorem 1.8.2. Let g1(X ) and g2(X ) be functions of a random variable
X . Suppose the expectations of g1(X ) and g2(X ) exist. Then for any
constants k1 and k2 the expectation of k1g1(X ) + k2g2(X ) exists and it is
given by

E (k1g1(X ) + k2g2(X )) = k1E (g1(X )) + k2E (g2(X )).

Proof. For the continuous case, we have by the Triangle Inequality on R∫ ∞

−∞
|f1g1(x) + k2g2(x)|fX (f ) dx ≤

∫ ∞

−∞
(|k1||g1(x)|+ |k2||g2(x)|)fX (x) dx

= |k1|
∫ ∞

−∞
|g1(x)|fX (x) dx + |k2|

∫ ∞

−∞
|g2(x)|fX (x) dx < ∞

where the boundedness follows by the hypothesis that the expectations of
g1(X ) and g2(X ) exist. Therefore the expectation of k1g1(X ) + k2g2(X ) is
defined.
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Theorem 1.8.2

Theorem 1.8.2 (continued 1)

Proof (continued). We now have, by the linearity of the integral,

E (k1g1(X ) + k2g2(X )) =

∫ ∞

−∞
(k1g1(x) + k2g2(x))fX (x) dx

= k1

∫ ∞

−∞
g1(x)fX (x) dx + k2

∫ ∞

−∞
g2(x)fX (x) dx

= k1E (g1(X )) + k2E (g2(X )),

as claimed.

For the discrete case, by the Triangle Inequality on R we have∑
x∈SX

|k1g1(x) + k2g2(x)|fX (x) ≤
∑
x∈SX

(|k1||g1(x)|+ |k2||g2(x)|)fX (x)

= |k1|
∑
x∈SX

|g1(x)|fX (x) + |kx |
∑
x∈SX

|g2(x)|fX (x) < ∞

where the boundedness follows by the hypothesis that the expectations of
g1(X ) and g2(X ) exist.
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Theorem 1.8.2

Theorem 1.8.2 (continued 2)

Theorem 1.8.2. Let g1(X ) and g2(X ) be functions of a random variable
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given by

E (k1g1(X ) + k2g2(X )) = k1E (g1(X )) + k2E (g2(X )).

Proof (continued). Therefore the expectation of k1g1(X ) + k2g2(X ) is
defined. We now have by the absolute summability and the
Rearrangement Theorem for Absolutely Convergent Series that

E (k1g1(x) + k2g2(x)) =
∑
x∈SX

(k1g1(x) + ksg2(x))fX (x)

= k1

∑
x∈SX

g1(x)fX (x) + k2

∑
x∈SX

g2(x)fX (x)

= k1E (g1(x)) + k2E (g2(X )),

as claimed.
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Exercise 1.8.7

Exercise 1.8.7

Exercise 1.8.7. Let X have the pdf f (x) = 3x2, 0 < x < 1, zero
elsewhere. Consider a random rectangle where sides are X and (1− X ).
Determine the expected value of the area of the rectangle.

Solution. We let A = X − X 2 be the random variable representing the
area of the rectangle. By Theorem 1.8.2 we have
E (A) = E (X − X 2) = E (X )− E (X 2) where

E (X ) =

∫ ∞

−∞
xf (x), dx =

∫ 1

0
x(3x2) dx =

∫ 1

0
3x3 dx =

3

4
x4

∣∣∣∣1
0

=
3

4

and by Theorem 1.8.1(a)

E (X 2) =

∫ ∞

−∞
x2f (x) dx =

∫ 1

0
x2(3x2) dx =

∫ 1

0
3x4 dx =

3

5
x5

∣∣∣∣1
0

=
3

5
.

So the expected area is E (A) = E (X )− E (X 2) = 3/4− 3/5 = 3/20.
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