Mathematical Statistics 1

Chapter 1. Introduction to Probability

1.9. Some Special Expectations—Proofs of Theorems

Table of contents

(1) Theorem 1.9.1
(2) Exercise 1.9.3(a)
(3) Exercise 1.9.7

Theorem 1.9.1

Theorem 1.9.1. Let X be a random variable with finite mean μ and finite variance σ^{2}. Then for all constants a and b we have $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$.

Proof. Since E is linear by Theorem 1.8.2, then $E[a X+b]=a E[X]+b=a \mu+b$. So

$$
\begin{aligned}
\operatorname{Var}(a X+b)= & E\left[((a X+b)-(a \mu+b))^{2}\right]=E\left[a^{2}(X-\mu)^{2}\right] \\
& =a^{2} E\left[(X-\mu)^{2}\right]=a^{2} \operatorname{Var}(X),
\end{aligned}
$$

as claimed.

Theorem 1.9.1

Theorem 1.9.1. Let X be a random variable with finite mean μ and finite variance σ^{2}. Then for all constants a and b we have $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$.

Proof. Since E is linear by Theorem 1.8.2, then $E[a X+b]=a E[X]+b=a \mu+b$. So

$$
\begin{aligned}
\operatorname{Var}(a X+b)= & E\left[((a X+b)-(a \mu+b))^{2}\right]=E\left[a^{2}(X-\mu)^{2}\right] \\
& =a^{2} E\left[(X-\mu)^{2}\right]=a^{2} \operatorname{Var}(X),
\end{aligned}
$$

as claimed.

Exercise 1.9.3(a)

Exercise 1.9.3(a). Let X have distribution $f(x)=6 x(1-x)=6 x-6 x^{2}$, $0<x<1$, zero elsewhere. Compute $P(\mu-2 \sigma<X<\mu+s \sigma)$.

Solution. First,

$$
\begin{aligned}
\mu & =E[X]=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{1} x\left(6 x-6 x^{2}\right) d x \\
& =\int_{0}^{1}\left(6 x^{2}-6 x^{3}\right) d x=\left.\left(2 x^{3}-\frac{3}{2} x^{4}\right)\right|_{0} ^{1}=\frac{1}{2}
\end{aligned}
$$

Exercise 1.9.3(a)

Exercise 1.9.3(a). Let X have distribution $f(x)=6 x(1-x)=6 x-6 x^{2}$, $0<x<1$, zero elsewhere. Compute $P(\mu-2 \sigma<X<\mu+s \sigma)$.

Solution. First,

$$
\begin{aligned}
\mu & =E[X]=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{1} x\left(6 x-6 x^{2}\right) d x \\
& =\int_{0}^{1}\left(6 x^{2}-6 x^{3}\right) d x=\left.\left(2 x^{3}-\frac{3}{2} x^{4}\right)\right|_{0} ^{1}=\frac{1}{2} .
\end{aligned}
$$

Next, for σ^{2} we first find $E[X]$:

So $\sigma^{2}=E\left[X^{2}\right]-\mu^{2}=3 / 10-(1 / 2)^{2}=1 / 20$ and then $\sigma=1 / \sqrt{20}$.

Exercise 1.9.3(a)

Exercise 1.9.3(a). Let X have distribution $f(x)=6 x(1-x)=6 x-6 x^{2}$, $0<x<1$, zero elsewhere. Compute $P(\mu-2 \sigma<X<\mu+s \sigma)$.

Solution. First,

$$
\begin{aligned}
\mu & =E[X]=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{1} x\left(6 x-6 x^{2}\right) d x \\
& =\int_{0}^{1}\left(6 x^{2}-6 x^{3}\right) d x=\left.\left(2 x^{3}-\frac{3}{2} x^{4}\right)\right|_{0} ^{1}=\frac{1}{2}
\end{aligned}
$$

Next, for σ^{2} we first find $E[X]$:

$$
\begin{gathered}
E\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{0}^{1} x^{2}\left(6 x-6 x^{2}\right) d x=\int_{0}^{1}\left(6 x^{3}-6 x^{4}\right) d x \\
=\left.\left(\frac{3}{2} x^{4}-\frac{6}{5} x^{5}\right)\right|_{0} ^{1}=\frac{3}{2}-\frac{6}{5}=\frac{3}{10}
\end{gathered}
$$

So $\sigma^{2}=E\left[X^{2}\right]-\mu^{2}=3 / 10-(1 / 2)^{2}=1 / 20$ and then $\sigma=1 / \sqrt{20}$.

Exercise 1.9.3(a) (continued)

Solution (continued). Hence (since $2 \sigma=2 / \sqrt{20}=1 / \sqrt{5}$)

$$
\begin{gathered}
P(\mu-2 \sigma<X<\mu+2 \sigma)=P\left(\frac{1}{2}-\frac{1}{\sqrt{5}}<X<\frac{1}{2}+\frac{1}{\sqrt{5}}\right) \\
=P\left(\frac{\sqrt{5}-2}{2 \sqrt{5}}<X<\frac{\sqrt{5}+2}{2 \sqrt{5}}\right) \\
=\int_{(\sqrt{5}-2) /(2 \sqrt{5})}^{(\sqrt{5}+2) /(2 \sqrt{5})}\left(6 x-6 x^{2}\right) d x=\left.\left(3 x^{2}-2 x^{3}\right)\right|_{(\sqrt{5}-2) /(2 \sqrt{5})} ^{(\sqrt{5}+2) /(2 \sqrt{5})} \\
=\left(3\left(\frac{\sqrt{5}+2}{2 \sqrt{5}}\right)^{2}-2\left(\frac{\sqrt{5}+2}{2 \sqrt{5}}\right)^{3}\right)-\left(3\left(\frac{\sqrt{5}-2}{2 \sqrt{5}}\right)^{2}-2\left(\frac{\sqrt{5}-2}{2 \sqrt{5}}\right)^{3}\right) \\
\approx 0.98387 .
\end{gathered}
$$

Exercise 1.9.7.

Exercise 1.9.7. Show that the moment generating function of the random variable X having the probability density function $f(x)=1 / 3$, $-1<x<2$, zero elsewhere, is

$$
M(t)=\left\{\begin{array}{cc}
\frac{e^{2 t}-e^{-t}}{3 t} & \text { for } t \neq 0 \\
1 & \text { for } t=0
\end{array}\right.
$$

Solution. By definition,

$$
\begin{aligned}
M(t) & =E\left[e^{t x}\right]=\int_{-\infty}^{\infty} e^{t X} f(x) d x=\int_{-1}^{2} \frac{1}{3} e^{t x} d x \\
& =\left.\frac{1}{3 t} e^{t x}\right|_{-1} ^{2}=\frac{e^{2 t}-e^{-t}}{3 t} \text { for } t \neq 0
\end{aligned}
$$

As commented above, $M(0)=1$ when a moment generating function exists and so the result follows.

Exercise 1.9.7.

Exercise 1.9.7. Show that the moment generating function of the random variable X having the probability density function $f(x)=1 / 3$, $-1<x<2$, zero elsewhere, is

$$
M(t)=\left\{\begin{array}{cc}
\frac{e^{2 t}-e^{-t}}{3 t} & \text { for } t \neq 0 \\
1 & \text { for } t=0
\end{array}\right.
$$

Solution. By definition,

$$
\begin{aligned}
M(t) & =E\left[e^{t X}\right]=\int_{-\infty}^{\infty} e^{t x} f(x) d x=\int_{-1}^{2} \frac{1}{3} e^{t x} d x \\
& =\left.\frac{1}{3 t} e^{t x}\right|_{-1} ^{2}=\frac{e^{2 t}-e^{-t}}{3 t} \text { for } t \neq 0
\end{aligned}
$$

As commented above, $M(0)=1$ when a moment generating function exists and so the result follows.

