Mathematical Statistics 1

Chapter 2. Multivariate Distributions

2.1. Distributions of Two Random Variables—Proofs of Theorems

Table of contents

(1) Theorem 2.1.1

Theorem 2.1.1

Theorem 2.1.1. Let $\left(X_{1}, X_{2}\right)$ be a random vector. Let $Y_{1}=g_{1}\left(X_{1}, X_{2}\right)$ and $Y_{2}=g_{2}\left(X_{1}, X_{2}\right)$ be random variables whose expectations exist. Then for all $k_{1}, k_{2} \in \mathbb{R}$ we have

$$
E\left[k_{1} Y_{1}+k_{2} Y_{2}\right]=k_{1} E\left[Y_{1}\right]+k_{2} E\left[Y_{2}\right] .
$$

Proof. We give a proof for the continuous case and leave the discrete case as an exercise. By the Triangle Inequality on \mathbb{R} and the linearity of integration

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left|k_{1} g_{1}\left(x_{1}, x_{2}\right)+k_{2} g_{2}\left(x_{1}, x_{2}\right)\right| f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
\leq & \int_{-\infty}^{\infty}\left(\left|k_{1}\right|\left|g_{1}\left(x_{1}, x_{2}\right)\right|+\left|k_{2}\right|\left|g_{2}\left(x_{1}, x_{2}\right)\right|\right) f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
\end{aligned}
$$

Theorem 2.1.1

Theorem 2.1.1. Let $\left(X_{1}, X_{2}\right)$ be a random vector. Let $Y_{1}=g_{1}\left(X_{1}, X_{2}\right)$ and $Y_{2}=g_{2}\left(X_{1}, X_{2}\right)$ be random variables whose expectations exist. Then for all $k_{1}, k_{2} \in \mathbb{R}$ we have

$$
E\left[k_{1} Y_{1}+k_{2} Y_{2}\right]=k_{1} E\left[Y_{1}\right]+k_{2} E\left[Y_{2}\right] .
$$

Proof. We give a proof for the continuous case and leave the discrete case as an exercise. By the Triangle Inequality on \mathbb{R} and the linearity of integration

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left|k_{1} g_{1}\left(x_{1}, x_{2}\right)+k_{2} g_{2}\left(x_{1}, x_{2}\right)\right| f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
\leq & \int_{-\infty}^{\infty}\left(\left|k_{1}\right|\left|g_{1}\left(x_{1}, x_{2}\right)\right|+\left|k_{2}\right|\left|g_{2}\left(x_{1}, x_{2}\right)\right|\right) f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
\end{aligned}
$$

Theorem 2.1.1 (continued)

Proof.

$$
\begin{gathered}
=\left|k_{1}\right| \int_{-\infty}^{\infty}\left|g_{1}\left(x_{1}, x_{2}\right)\right| f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
+\left|k_{2}\right| \int_{-\infty}^{\infty}\left|g_{2}\left(x_{1}, x_{2}\right)\right| f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}<\infty
\end{gathered}
$$

where the boundedness follows by the hypothesis that the expectations of $Y_{1}=g_{1}\left(X_{1}, X_{2}\right)$ an $\mathrm{d} Y_{2}=g_{2}\left(X_{1}, X_{2}\right)$ exist. Therefore the expectation of $k_{1} g_{1}\left(x_{1}, x_{2}\right)+k_{2} g_{2}\left(x_{1}, x_{2}\right)$ exists. Again by linearity of integration, $E\left[k_{1} Y_{1}+k_{2} Y_{2}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}$ $\left(k_{1} g_{1}\left(x_{1}, x_{2}\right)+k_{2} g_{2}\left(x_{1}, x_{2}\right)\right) f f_{x_{1}, x_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}$ $=k_{1} \int_{-\infty}^{\infty} g_{1}\left(x_{1}, x_{2}\right) f_{x_{1}, x_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}$ $+k_{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g_{2}\left(x_{1}, x_{2}\right) f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=k_{1} E\left[Y_{1}\right]+k_{2} E\left[Y_{2}\right]$,

Theorem 2.1.1 (continued)

Proof.

$$
\begin{gathered}
=\left|k_{1}\right| \int_{-\infty}^{\infty}\left|g_{1}\left(x_{1}, x_{2}\right)\right| f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
+\left|k_{2}\right| \int_{-\infty}^{\infty}\left|g_{2}\left(x_{1}, x_{2}\right)\right| f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}<\infty
\end{gathered}
$$

where the boundedness follows by the hypothesis that the expectations of $Y_{1}=g_{1}\left(X_{1}, X_{2}\right)$ an $\mathrm{d} Y_{2}=g_{2}\left(X_{1}, X_{2}\right)$ exist. Therefore the expectation of $k_{1} g_{1}\left(x_{1}, x_{2}\right)+k_{2} g_{2}\left(x_{1}, x_{2}\right)$ exists. Again by linearity of integration,

$$
\begin{aligned}
E\left[k_{1} Y_{1}+k_{2} Y_{2}\right]= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(k_{1} g_{1}\left(x_{1}, x_{2}\right)+k_{2} g_{2}\left(x_{1}, x_{2}\right)\right) f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& =k_{1} \int_{-\infty}^{\infty} g_{1}\left(x_{1}, x_{2}\right) f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
\end{aligned}
$$

$$
+k_{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g_{2}\left(x_{1}, x_{2}\right) f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=k_{1} E\left[Y_{1}\right]+k_{2} E\left[Y_{2}\right]
$$

as claimed.

