Mathematical Statistics 1

Chapter 2. Multivariate Distributions

2.3. Conditional Distributions and Expectations—Proofs of Theorems

Theorem 2.3.1

Theorem 2.3.1. Let \((X_1, X_2)\) be a random vector such that the variance of \(X_2\) is finite. Then

(a) \(E[E[X_2 \mid X_1]] = E[X_2]\), and
(b) \(\text{Var}(E[X_2 \mid X_1]) \leq \text{Var}(X_2)\).

Proof. We give proofs for the continuous case and leave the discrete case as an exercise.

(a) We have

\[
E[X_2] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_2 f(x_1, x_2) \, dx_2 \, dx_1
\]

\[
= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} x_2 f(x_1, x_2) \, dx_2 \right) f_1(x_1) \, dx_1
\]

\[
= \int_{-\infty}^{\infty} E[X_2 \mid x_1] f_1(x_1) \, dx_1 = E[E[X_2 \mid X_1]]
\]

(notice that \(E[X_2 \mid x_1]\) is a function of \(x_1\)).

Theorem 2.3.1 (continued 1)

Proof (continued). (b) Let \(\mu_2 = E[X_2]\), then

\[
\text{Var}(X_2) = E[(X_2 - \mu_2)^2] = E[(X_2 - E[X_2 \mid X_1] + E[X_2 \mid X_1] - \mu_2)^2]
\]

\[
= E[(X_2 - E[X_2 \mid X_1] + E[X_2 \mid X_1] - \mu_2)(X_2 - E[X_2 \mid X_1] + E[X_2 \mid X_1] - \mu_2)]
\]

\[
= E[(X_2 - E[X_2 \mid X_1])^2 + 2E[(X_2 - E[X_2 \mid X_1] - \mu_2)(X_2 - E[X_2 \mid X_1])] + E[(E[X_2 \mid X_1] - \mu_2)^2]
\]

where the last equality holds since \(E\) is linear by Theorem 2.1.1.

Theorem 2.3.1 (continued 2)

Proof (continued).

\[
2E[(E[X_2 \mid X_1] - \mu_2)(X_2 - E[X_2 \mid X_1])]
\]

\[
= 2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x_2 - E[X_2 \mid x_1])(E[X_2 \mid x_1] - \mu_2) f(x_1, x_2) \, dx_2 \, dx_1
\]

\[
= 2 \int_{-\infty}^{\infty} (E[X_2] - \mu_2) \left(\int_{-\infty}^{\infty} (x_2 - E[X_2 \mid x_1]) \frac{f(x_1, x_2)}{f_1(x_1)} \, dx_2 \right) f_1(x_1) \, dx_1.
\]

We have

\[
\int_{-\infty}^{\infty} (x_2 - E[X_2 \mid x_1]) \frac{f(x_1, x_2)}{f_1(x_1)} \, dx_2
\]

\[
= \int_{-\infty}^{\infty} x_2 \frac{f(x_1, x_2)}{f_1(x_1)} \, dx_2 - E[X_2 \mid x_1] \int_{-\infty}^{\infty} \frac{f(x_1, x_2)}{f_1(x_1)} \, dx_2
\]

\[
= E[X_2 \mid x_1] - E p X_2 \mid x_2 \mid x_1 = 0,
\]

...
Theorem 2.3.1 (continued 3)

Proof (continued). . . . so $2E[(X_2 - E[X_2 | X_1])(E[X_2 | X_1] - \mu_2)] = 0$

and

$$\text{Var}(X_2) = E[(X_2 - E[X_2 | X_1])^2] + E[(E[X_2 | X_1] - \mu_2)^2]$$

$$\geq E[(E[X_2 | X_1] - \mu_2)^2] \quad (*)$$

since $E[(X_2 - E[X_2 | X_1])^2] \geq 0$. Now for random variable X,

$$\text{Var}(X) = E[(X - \mu)^2] = E[(X - E[X])^2]$$

(see Definition 1.9.2), so random variable $E[X_2 | X_1]$ has mean $E[E[X_2 | X_1]]$ and by part (a),

$$E[E[X_2 | X_1]] = E[X_2] = \mu_2$$

so that

$$\text{Var}(E[X_2 | X_1]) = E[(E[X_2 | X_1] - \mu_2)^2]$$

and hence by $(*)$

$$\text{Var}(X_2) \geq E[(E[X_2 | X_1] - \mu_2)^2] = \text{Var}(E[X_2 | X_1]),$$

as claimed. \qed