Mathematical Statistics 1

Chapter 2. Multivariate Distributions

2.3. Conditional Distributions and Expectations—Proofs of Theorems

Mathematical Statistics 1

October 25, 2019 1

Theorem 2.2.1

Theorem 2.3.1 (continued 1)

Proof (continued). (b) Let $\mu_2 = E[X_2]$, then

$$Var(X_{2}) = E[(X_{2} - \mu_{2})^{2}] = E[(X_{2} - E[X_{2} \mid X_{1}] + E[X_{2} \mid X_{1}] - \mu_{2})^{2}]$$

$$= E[(X_{2} - E[X_{2} \mid X_{1}] + E[X_{2} \mid X_{1}] - \mu_{2})(X_{2} - E[X_{2} \mid X_{1}] + E[X_{2} \mid X_{1}] - \mu_{2})]$$

$$= E[(X_{2} - E[X_{2} \mid X_{1}])^{2} + (E[X_{2} \mid X_{1}] - \mu_{2})(X_{2} - E[X_{2} \mid X_{1}])$$

$$+ (X_{2} - E[X_{2} \mid X_{1}])(E[X_{2} \mid X_{1}] - \mu_{2}) + (E[X_{2} \mid X_{1}] - \mu_{2})^{2}]$$

$$= E[(X_{2} - E[X_{2} \mid X_{1}])^{2}] + 2E[(E[X_{2} \mid X_{1}] - \mu_{2})(X_{2} - E[X_{2} \mid X_{1}])]$$

$$+ E[(E[X_{2} \mid X_{1}] - \mu_{2})^{2}]$$

where the last equality holds since E is linear by Theorem 2.1.1.

Theorem 2.3.1

Theorem 2.3.1

Theorem 2.3.1. Let (X_1, X_2) be a random vector such that the variance of X_2 is finite. Then

- (a) $E[E[X_2 \mid X_1]] = E[X_2]$, and
- (b) $Var([E[X_2 \mid X_1]) \leq Var(X_2)$.

Proof. We give proofs for the continuous case and leave the discrete case as an exercise.

(a) We have

$$E[X_2] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_2 f(x_1, x_2) dx_2 dx_1$$

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} x_2 \frac{f(x_1, x_2)}{f_1(x_1)} dx_2 \right) f_1(x_2) dx_1$$

$$= \int_{-\infty}^{\infty} E[X_2 \mid x_1] f_1(x_1) dx_1 = E[E[X_2 \mid X_1]]$$

Mathematical Statistics 1

(notice that $E[X_2 \mid x_1]$ is a function of x_1).

Theorem 2.3.1 (continued 2)

Proof (continued).

$$2E[(E[X_2 \mid X)1] - \mu_2)(X_2 - E[X_2 \mid X_1])]$$

$$= 2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (X_2 - E[X_2 \mid x_1])(E[X_2 \mid x_1] - \mu_2)f(x_1, x_2) dx_2 dx_1$$

$$= 2 \int_{-\infty}^{\infty} (E[X_2] - \mu_2) \left(\int_{-\infty}^{\infty} (x_2 - E[X_2 \mid x_1]) \frac{f(x_1, x_2)}{f_1(x_1)} dx_2 \right) f_1(x_1) dx_1.$$

We have

$$\int_{-\infty}^{\infty} (x_2 - E[X_2 \mid x_1]) \frac{f(x_1, x_2)}{f_1(x_1)} dx_2$$

$$= \int_{-\infty}^{\infty} x_2 \frac{f(x_1, x_2)}{f_1(x_1)} dx_2 - E[X_2 \mid x_1] \int_{-\infty}^{\infty} \frac{f(x_1, x_2)}{f_1(x_1)} dx_2$$

$$= E[X_2 \mid x_1] - EpX_2 \mid x_2](1) = 0,$$

() Mathematical Statistics 1

October 25, 2019

October 25, 2019

Theorem 2.3.1 (continued 3)

Proof (continued). ... so $2E[(X_2 - E[X_2 \mid X_1])(E[X_2 \mid X_1] - \mu_2)] = 0$ and

$$Var(X_2) = E[(X_2 - E[X_2 \mid X_1])^2] + E[(E[X_2 \mid X_1] - \mu_2)^2]$$

$$\geq E[(E[X_2 \mid X_1] - \mu_2)^2] \qquad (*)$$

since $E[(X_2 - E[X_2 \mid X_1])^2] \ge 0$. Now for random variable X, $Var(X) = E[(X - \mu)^2] = E[(X - E[X])^2]$ (see Definition 1.9.2), so random variable $E[X_2 \mid X_1]$ has mean $E[E[X_2 \mid X_1]]$ and by part (a), $E[E[X_2 \mid X_1]] = E[X_2] = \mu_2$ so that

$$Var(E[X_2 \mid X_1]) = E[(E[X_2 \mid X_1] - \mu_2)^2]$$

and hence by (*)

$$Var(X_2) \ge E[(E[X_2 \mid X_1] - \mu_2)^2] = Var(E[X_2 \mid X_1]),$$

as claimed.

Mathematical Statistics 1

October 25, 2019

6 /

