Mathematical Statistics 1

Chapter 2. Multivariate Distributions

2.3. Conditional Distributions and Expectations-Proofs of Theorems

Table of contents

(1) Theorem 2.3.1

Theorem 2.3.1

Theorem 2.3.1. Let $\left(X_{1}, X_{2}\right)$ be a random vector such that the variance of X_{2} is finite. Then
(a) $E\left[E\left[X_{2} \mid X_{1}\right]\right]=E\left[X_{2}\right]$, and
(b) $\operatorname{Var}\left(\left[E\left[X_{2} \mid X_{1}\right]\right) \leq \operatorname{Var}\left(X_{2}\right)\right.$.

Proof. We give proofs for the continuous case and leave the discrete case as an exercise.
(a) We have

$$
\begin{aligned}
& E\left[X_{2}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{2} f\left(x_{1}, x_{2}\right) d x_{2} d x_{1} \\
= & \int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} x_{2} \frac{f\left(x_{1}, x_{2}\right)}{f_{1}\left(x_{1}\right)} d x_{2}\right) f_{1}\left(x_{2}\right) d x_{1} \\
= & \int_{-\infty}^{\infty} E\left[X_{2} \mid x_{1}\right] f_{1}\left(x_{1}\right) d x_{1}=E\left[E\left[X_{2} \mid X_{1}\right]\right]
\end{aligned}
$$

Theorem 2.3.1

Theorem 2.3.1. Let $\left(X_{1}, X_{2}\right)$ be a random vector such that the variance of X_{2} is finite. Then
(a) $E\left[E\left[X_{2} \mid X_{1}\right]\right]=E\left[X_{2}\right]$, and
(b) $\operatorname{Var}\left(\left[E\left[X_{2} \mid X_{1}\right]\right) \leq \operatorname{Var}\left(X_{2}\right)\right.$.

Proof. We give proofs for the continuous case and leave the discrete case as an exercise.
(a) We have

$$
\begin{aligned}
& E\left[X_{2}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{2} f\left(x_{1}, x_{2}\right) d x_{2} d x_{1} \\
= & \int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} x_{2} \frac{f\left(x_{1}, x_{2}\right)}{f_{1}\left(x_{1}\right)} d x_{2}\right) f_{1}\left(x_{2}\right) d x_{1} \\
= & \int_{-\infty}^{\infty} E\left[X_{2} \mid x_{1}\right] f_{1}\left(x_{1}\right) d x_{1}=E\left[E\left[X_{2} \mid X_{1}\right]\right]
\end{aligned}
$$

(notice that $E\left[X_{2} \mid x_{1}\right]$ is a function of x_{1}).

Theorem 2.3.1 (continued 1)

Proof (continued). (b) Let $\mu_{2}=E\left[X_{2}\right]$, then

$$
\begin{gathered}
\operatorname{Var}\left(X_{2}\right)=E\left[\left(X_{2}-\mu_{2}\right)^{2}\right]=E\left[\left(X_{2}-E\left[X_{2} \mid X_{1}\right]+E\left[X_{2} \mid X_{1}\right]-\mu_{2}\right)^{2}\right] \\
=E\left[\left(X_{2}-E\left[X_{2} \mid X_{1}\right]+E\left[X_{2} \mid X_{1}\right]-\mu_{2}\right)\left(X_{2}-E\left[X_{2} \mid X_{1}\right]+E\left[X_{2} \mid X_{1}\right]-\mu_{2}\right)\right] \\
=E\left[\left(X_{2}-E\left[X_{2} \mid X_{1}\right]\right)^{2}+\left(E\left[X_{2} \mid X_{1}\right]-\mu_{2}\right)\left(X_{2}-E\left[X_{2} \mid X_{1}\right]\right)\right. \\
\left.\quad+\left(X_{2}-E\left[X_{2} \mid X_{1}\right]\right)\left(E\left[X_{2} \mid X_{1}\right]-\mu_{2}\right)+\left(E\left[X_{2} \mid X_{1}\right]-\mu_{2}\right)^{2}\right] \\
=E\left[\left(X_{2}-E\left[X_{2} \mid X_{1}\right]\right)^{2}\right]+2 E\left[\left(E\left[X_{2} \mid X_{1}\right]-\mu_{2}\right)\left(X_{2}-E\left[X_{2} \mid X_{1}\right]\right)\right] \\
\left.+E\left[\left(X_{2} \mid X_{1}\right]-\mu_{2}\right)^{2}\right]
\end{gathered}
$$

where the last equality holds since E is linear by Theorem 2.1.1.

Theorem 2.3.1 (continued 2)

Proof (continued).

$$
\begin{gathered}
\left.2 E\left[\left(E\left[X_{2} \mid X\right) 1\right]-\mu_{2}\right)\left(X_{2}-E\left[X_{2} \mid X_{1}\right]\right)\right] \\
=2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(X_{2}-E\left[X_{2} \mid x_{1}\right]\right)\left(E\left[X_{2} \mid x_{1}\right]-\mu_{2}\right) f\left(x_{1}, x_{2}\right) d x_{2} d x_{1} \\
=2 \int_{-\infty}^{\infty}\left(E\left[X_{2}\right]-\mu_{2}\right)\left(\int_{-\infty}^{\infty}\left(x_{2}-E\left[X_{2} \mid x_{1}\right]\right) \frac{f\left(x_{1}, x_{2}\right)}{f_{1}\left(x_{1}\right)} d x_{2}\right) f_{1}\left(x_{1}\right) d x_{1} .
\end{gathered}
$$

We have

$$
\begin{gathered}
\int_{-\infty}^{\infty}\left(x_{2}-E\left[X_{2} \mid x_{1}\right]\right) \frac{f\left(x_{1}, x_{2}\right)}{f_{1}\left(x_{1}\right)} d x_{2} \\
=\int_{-\infty}^{\infty} x_{2} \frac{f\left(x_{1}, x_{2}\right)}{f_{1}\left(x_{1}\right)} d x_{2}-E\left[X_{2} \mid x_{1}\right] \int_{-\infty}^{\infty} \frac{f\left(x_{1}, x_{2}\right)}{f_{1}\left(x_{1}\right)} d x_{2} \\
\left.=E\left[X_{2} \mid x_{1}\right]-E p X_{2} \mid x_{2}\right](1)=0,
\end{gathered}
$$

Theorem 2.3.1 (continued 3)

Proof (continued). ...so $2 E\left[\left(X_{2}-E\left[X_{2} \mid X_{1}\right]\right)\left(E\left[X_{2} \mid X_{1}\right]-\mu_{2}\right)\right]=0$ and

$$
\begin{gather*}
\operatorname{Var}\left(X_{2}\right)=E\left[\left(X_{2}-E\left[X_{2} \mid X_{1}\right]\right)^{2}\right]+E\left[\left(E\left[X_{2} \mid X_{1}\right]-\mu_{2}\right)^{2}\right] \\
\geq E\left[\left(E\left[X_{2} \mid X_{1}\right]-\mu_{2}\right)^{2}\right] \tag{*}
\end{gather*}
$$

since $E\left[\left(X_{2}-E\left[X_{2} \mid X_{1}\right]\right)^{2}\right] \geq 0$. Now for random variable X,
$\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]=E\left[(X-E[X])^{2}\right]$ (see Definition 1.9.2), so random variable $E\left[X_{2} \mid X_{1}\right]$ has mean $E\left[E\left[X_{2} \mid X_{1}\right]\right]$ and by part (a), $E\left[E\left[X_{2} \mid X_{1}\right]\right]=E\left[X_{2}\right]=\mu_{2}$ so that

$$
\operatorname{Var}\left(E\left[X_{2} \mid X_{1}\right]\right)=E\left[\left(E\left[X_{2} \mid X_{1}\right]-\mu_{2}\right)^{2}\right]
$$

and hence by (*)

$$
\operatorname{Var}\left(X_{2}\right) \geq E\left[\left(E\left[X_{2} \mid X_{1}\right]-\mu_{2}\right)^{2}\right]=\operatorname{Var}\left(E\left[X_{2} \mid X_{1}\right]\right),
$$

Theorem 2.3.1 (continued 3)

Proof (continued). ...so $2 E\left[\left(X_{2}-E\left[X_{2} \mid X_{1}\right]\right)\left(E\left[X_{2} \mid X_{1}\right]-\mu_{2}\right)\right]=0$ and

$$
\begin{gather*}
\operatorname{Var}\left(X_{2}\right)=E\left[\left(X_{2}-E\left[X_{2} \mid X_{1}\right]\right)^{2}\right]+E\left[\left(E\left[X_{2} \mid X_{1}\right]-\mu_{2}\right)^{2}\right] \\
\geq E\left[\left(E\left[X_{2} \mid X_{1}\right]-\mu_{2}\right)^{2}\right] \tag{*}
\end{gather*}
$$

since $E\left[\left(X_{2}-E\left[X_{2} \mid X_{1}\right]\right)^{2}\right] \geq 0$. Now for random variable X, $\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]=E\left[(X-E[X])^{2}\right]$ (see Definition 1.9.2), so random variable $E\left[X_{2} \mid X_{1}\right]$ has mean $E\left[E\left[X_{2} \mid X_{1}\right]\right]$ and by part (a), $E\left[E\left[X_{2} \mid X_{1}\right]\right]=E\left[X_{2}\right]=\mu_{2}$ so that

$$
\operatorname{Var}\left(E\left[X_{2} \mid X_{1}\right]\right)=E\left[\left(E\left[X_{2} \mid X_{1}\right]-\mu_{2}\right)^{2}\right]
$$

and hence by (*)

$$
\operatorname{Var}\left(X_{2}\right) \geq E\left[\left(E\left[X_{2} \mid X_{1}\right]-\mu_{2}\right)^{2}\right]=\operatorname{Var}\left(E\left[X_{2} \mid X_{1}\right]\right),
$$

as claimed.

