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Theorem 2.4.1

Theorem 2.4.1

Theorem 2.4.1. Let the random variables X1 and X2 have supports S1

and S2, respectively, and have the joint probability density function
f (x1, x2). Then X1 and X2 are independent if and only if f (x1, x2) can be
written as a product of a nonnegative function of x1 and a nonnegative
function of x2. That is, f (x1, x2) ≡ g(x1)h(x2) for some g(x1) > 0 for
x1 ∈ S1 and 0 elsewhere, and some h(x2) > 0 for x2 ∈ S2 and 0 elsewhere.

Proof. If X1 and X2 are independent then f (x1, x2) = f1(x1)f2(x2) where
f1 and f2 are the marginal probability density functions of X1 and X2 so
that f1(x1) > 0 for x1 ∈ S1 and f2(x2) > 0 for x2 ∈ S2, as claimed.

Conversely, if f (x1, x2) ≡ g(x1)h(x2), where g and h are nonnegative and
positive on S1 and S2 respectively, then for the continuous random
variables we have the marginal probability density functions

f1(x1) =

∫ ∞
−∞

g(x1)f (x2) dx2 = g(x1)

∫ ∞
−∞

h(x2) dx2 = c1g(x1)
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Theorem 2.4.1

Theorem 2.4.1 (continued)

Proof (continued). . . . and

f2(x2) =

∫ ∞
−∞

g(x1)f (x2) dx1 = h(x2)

∫ ∞
−∞

g(x1) dx1 = c2h(x2)

for some c1 and c2 (notice that we need g and h to be integrable here).
Now

1 =

∫ ∞
−∞

∫ ∞
−∞

g(x1)h(x2) dx1 dx2 =

∫ ∞
−∞

g(x1) dx1

∫ ∞
−∞

h(x2) dx2 = c1c2.

So we have

f (x1, x2) ≡ g(x1)h(x2) = c1g(x1)c2h(x2) = f1(x1)f2(x2)

so that continuous random variables X1 and X2 are independent, as
claimed. We leave the discrete case as an exercise.
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Theorem 2.4.1 (continued)

Proof (continued). . . . and

f2(x2) =

∫ ∞
−∞

g(x1)f (x2) dx1 = h(x2)

∫ ∞
−∞

g(x1) dx1 = c2h(x2)

for some c1 and c2 (notice that we need g and h to be integrable here).
Now

1 =

∫ ∞
−∞

∫ ∞
−∞

g(x1)h(x2) dx1 dx2 =

∫ ∞
−∞

g(x1) dx1

∫ ∞
−∞

h(x2) dx2 = c1c2.

So we have

f (x1, x2) ≡ g(x1)h(x2) = c1g(x1)c2h(x2) = f1(x1)f2(x2)

so that continuous random variables X1 and X2 are independent, as
claimed. We leave the discrete case as an exercise.

() Mathematical Statistics 1 November 1, 2019 4 / 14



Theorem 2.4.2

Theorem 2.4.2

Theorem 2.4.2. Let (X1,X2) be a random vector with joint cumulative
distribution function F (x1, x2) and let X1 and X2 have the marginal
cumulative distribution functions F1(x1) and F2(x2), respectively. Then X1

and X2 are independent if and only if F (x1, x2) = F1(x1)F2(x2) for all
(x1, x2) ∈ R2.

Proof. We give a proof for continuous random variables and leave the
discrete case as an exercise. It is shown in Note 2.1.B that the joint
cumulative distribution function FX1,X2 and the probability density function
fX1,X2 for random vector (X1,X2) satisfies

∂2[FX1,X2(x1, x2)]

∂x1 ∂x2
= fX1,X2(x1, x2).

So if F (x1, x2) = F1(x1)F2(x2) then. . .
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Theorem 2.4.2

Theorem 2.4.2 (continued)

Proof (continued).

f (x1, x2) =
∂2

∂x1 ∂x2
[F (x1, x2)] =

∂2

∂x1 ∂x2
[F1(x1)F2(x2)]

=
d

dx1
[F1(x1)]

d

dx2
[F2(x2)] = f1(x1)f2(x2)

by Note 1.7.A, and so X1 and X2 are independent by Definition 2.4.1, as
claimed.
Suppose X1 and X2 are independent so that f (x1, x2) = f1(x1)f2(x2) by
Definition 2.4.1, then by the definition of the joint cumulative distribution
function

F (x1, x2) =

∫ ∞
−∞

∫ ∞
−∞

f (w1,w2) dw2 dw1 =

∫ x1

−∞

∫ x2

−∞
f1(w1)f2(w2) dw2 dw1

=

∫ x1

−∞
f1(w1) dw1

∫ x2

−∞
f2(w2) dw2 = F1(x1)F2(x2),

as claimed.
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Theorem 2.4.3

Theorem 2.4.3

Theorem 2.4.3. The random variables X1 and X2 are independent
random variables if and only if

P(a < X1 ≤ b, c < X2 ≤ d) = P(a < X1 ≤ b)P(c < X2 ≤ d)

for every a < b and c < d , where a, b, c , d are constants.

Proof. If X1 and X2 are independent then

P(a < X1 ≤ b, c < X2 ≤ d)

= F (b, d)− F (a, d)− F (b, c) + F (a, c) by Exercise 2.1.3

(see Notes 2.1.A), where F is the joint cdf of X1 and X2

= F1(b)F2(d)− F1(a)F2(d)− F1(b)F2(c)− F1(a)F2(c)

by Theorem 2.4.2

= (F1(b)− F1(a))(F2(d)− F2(c)) = P(a < X1 ≤ b)P(c < X2 ≤ d),

as claimed.
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Theorem 2.4.3

Theorem 2.4.3 (continued)

Theorem 2.4.3. The random variables X1 and X2 are independent
random variables if and only if

P(a < X1 ≤ b, c < X2 ≤ d) = P(a < X1 ≤ b)P(c < X2 ≤ d)

for every a < b and c < d , where a, b, c , d are constants.

Proof (continued). Now suppose

P(a < X1 ≤ b, c < X2 ≤ d) = P(a < X1 ≤ b)P(x < X2 ≤ d).

By Continuity of the Probability Function (Theorem 1.3.6), we have when
a → −∞ and c → −∞ that P(X1 ≤ b, x2 ≤ d) = P(X1 ≤ b)P(X2 ≤ d),
or F (b, d) = F1(b)F2(d). Since b, d ∈ R are arbitrary then
F (x1, x2) = F1(x1)F2(x2) for all (x1, x2) ∈ R2 and so by Theorem 2.4.2 X1

and X2 are independent, as claimed.
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Theorem 2.4.4

Theorem 2.4.4

Theorem 2.4.4. Suppose X1 and X2 are independent and that E [u(X1)]
and E [v(X2)] exists. Then

E [u(x1)v(X2)] = E [u(X1)]E [v(X2)].

Proof. We give the proof for continuous random variables and leave the
discrete case as an exercise. Since X1 and X2 are hypothesized to be
independent then f (x1, x2) = f1(x1)f2(x2). So

E [u(X1)v(X2)] =

∫ ∞
−∞

∫ ∞
−∞

u(x1)v(x2)f (x1, x2) dx1 dx2

=

∫ ∞
−∞

u(x1)f1(x1) dx1

∫ ∞
−∞

v(x2)f2(x2) dx2 = E [u(X1)]E [v(X2)],

as claimed.
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Theorem 2.4.5

Theorem 2.4.5

Theorem 2.4.5. Suppose the joint moment generating function M(t1, t2)
exists for the random variables X1 and X2. Then X1 and X2 are
independent if and only if M(t1, t2) = M(t1, 0)M(0, t2); that is, the joint
moment generating function is identically equal to the product of the
marginal moment generating functions.

Proof. If X1 and X2 are independent then

M(t1, t2) = E [et1X1+t2X2 ] = E [et1X1et2X2 ]

= E [et1X1 ]E [et2X2 ] by Theorem 2.4.4

= M(t1, 0)M(0, t2),

as claimed.

Now suppose M(t1, t2) = M(t1, 0)M(0, t2). By Theorem 1.9.2, the
moment generating function of a random variable is unique, so
M(t1, 0) =

∫∞
−∞ et1x1f1(x1) dx1 and similarly

M(0, t2) =
∫∞
−∞ et2x2f2(x2) dx2.
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Theorem 2.4.5

Theorem 2.4.5 (continued)

Proof (continued). So, by hypothesis,

M(t1, 0)M(0, t2) =

∫ ∞
−∞

et1x1f1(x1) dx1

∫ ∞
−∞

et2x2f2(x2) dx2

=

∫ ∞
−∞

∫ ∞
−∞

et1x1+t2x2f1(x1)f2(x2) dx1 dx2 = M(t1, t2).

But also

M(t1, t2) =

∫ ∞
−∞

et1x1+t2x2f (x1, x2) dx1 dx2.

So we have the moment generating function based on two probability
density functions. By Theorem 1.9.2, if moment generating functions are
equal then the cumulative distribution functions are equal and hence (by
Note 1.7.A) their probability density functions are equal. Hence,
f (x1, x2) ≡ f1(x1)f2(x2) so that by Definition 2.4.1, X1 and X2 are
independent, as claimed.
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Exercise 2.4.6(a)

Exercise 2.4.6(a)

Exercise 2.4.6(a). If f (x1, x2) = e−x1−x2 for 0 < x1 < ∞, 0 < x2 < ∞,
and 0 elsewhere, is the joint probability density function of random
variables X1 and X2, show that X1 and X2 are independent and that

M(t1, t2) =
1

(1− t1)(1− t2)
for t1 < 1, t2 < 1.

Solution. We have

M(t1, t2) = E [et1X1+t2X2 ] =

∫ ∞
−∞

∫ ∞
−∞

et1x1+t2x2f (x1, x2) dx1 dx2

=

∫ ∞
0

∫ ∞
0

et1x1+t2x2e−x1−x2 dx1 dx2 =

∫ ∞
0

∫ ∞
0

et1x1−x1et2x2−x2 dx1 dx2

=

∫ ∞
0

e(t1−1)x1 dx1

∫ ∞
0

e(t2−1)x2 dx2 = · · ·
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Exercise 2.4.6(a)

Exercise 2.4.6(a) (continued 1)

Solution (continued).

· · · =

(
1

t1 − 1
e(t1−1)x1

∣∣∣∣x1=∞

x1=0

)(
1

t2 − 1
e(t2−1)x2

∣∣∣∣x2=∞

x2=0

)

=

(
0− 1

t1 − 1

)(
0

1

t2 − 1

)
if t1 < 1 and t2 < 1

=
1

(1− t1)(1− t2)
if t1 < 1 and t2 < 1, as claimed.

We then have M(t1, 0) = −1/(1− t1) and M(0, t2) = −1/(1− t2) so that

M(t1, t2) =
1

(1− t1)(1− t2)
=

−1

1− t1

−1

1− t2
= M(t1, 0)M(0, t2)

and so X1 and X2 are independent by Theorem 2.4.5.
. . .
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Exercise 2.4.6(a)

Exercise 2.4.6(a) (continued 1)

Solution (continued).
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Exercise 2.4.6(a)

Exercise 2.4.6(a) (continued 2)

Exercise 2.4.6(a). If f (x1, x2) = e−x1−x2 for 0 < x1 < ∞, 0 < x2 < ∞,
and 0 elsewhere, is the joint probability density function of random
variables X1 and X2, show that X1 and X2 are independent and that

M(t1, t2) =
1

(1− t1)(1− t2)
for t1 < 1, t2 < 1.

Note. We can easily show that X1 and X2 are independent using Theorem
2.4.1 (notice that the support of f (x1, x2) is a “product space”) with
g(x1) = e−x1 for 0 < x1 < ∞ and 0 elsewhere, and h(x2) = e−x2 for
0 < x2 < ∞ and 0 elsewhere, so that f (x1, x2) ≡ g(x1)h(x2).
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