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Chapter 2. Multivariate Distributions
2.5. The Correlation Coefficient—Proofs of Theorems
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Theorem 2.5.1

Theorem 2.5.1

Theorem 2.5.1. For all jointly distributed random variables (X ,Y ) whose
correlation coefficient ρ exists (so that σ1 > 0 and σ2 > 0 by the definition
of ρ), we have −1 ≤ ρ ≤ 1.

Proof. With E [X ] = µ1 and E [Y ] = µ2, consider the polynomial in v
given by

h(v) = E [((X − µ1) + v(Y − µ2))
2].

Then h(v) ≥ 0 for all v . Hence the discriminant of h(v) is less than or
equal to 0 (for if the discriminant is positive then h has two roots and h is
negative between those two roots).
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Theorem 2.5.1

Theorem 2.5.1 (continued)

Proof (continued). Since E is linear (by Theorem 1.8.2) we have

h(v) = E [((X − µ1) + v(Y − µ2))
2]

= E [(X − µ1)
2 + 2v(X − µ1)(Y − µ2) + v2(Y − µ2)

2]

= E [(x − µ1)
2] + 2vE [(X − µ1)(Y − µ2)] + v2E [(Y − µ2)

2]

= σ2
1 + 2vcov(X ,Y ) + v2σ2

2 by Definition 2.5.1

= σ2
1 + 2vρσ1σ2 + v2σ2

2 by Definition 2.5.2.

So the discriminant is nonpositive then 4(ρ2 − 1)σ2
1σ

2
2 ≤ 0 or ρ2 − 1 ≤ 0

or |ρ| ≤ 1, as claimed.
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Theorem 2.5.2

Theorem 2.5.2

Theorem 2.5.2. If X and Y are independent random variables then
cov(X ,Y ) = 0 and hence ρ = 0.

Proof. If X and Y are independent then by Theorem 2.4.2 we have
E [XY ] = E [X ]E [Y ]. So by Note 2.5.A,

cov(X ,Y ) = E [XY ]− µ1µ2 = µ1µ2 − µ1µ2 = 0,

as claimed.
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Theorem 2.5.3

Theorem 2.5.3

Theorem 2.5.3. Suppose (X ,Y ) have a joint distribution with the
variances of X and Y finite and positive. Denote the means and variances
of X and Y by µ1, µ2 and σ2

1, σ2
2, respectively, and let ρ be the correlation

coefficient between X and Y . If E [Y | X ] is linear in X then

E [Y | X ]µ2 + ρ
σ2

σ1
(X − µ1) and E [Var(Y | X )] = σ2

2(1− ρ2).

Proof. We give a proof for the continuous case and leave the discrete case
as an exercise. Suppose E [Y | X ] is linear in X , say E [Y | x ] = a + bx . By
the definition of conditional probability function (see Section 2.3) we have

fY |X (y | x) = f2|1(y | x) =
fX ,Y

(x , y)
fX (x) =

f (x , y)

f1(x)

and so by the definition of expected value (Definition 1.8.1) we have . . .
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Theorem 2.5.3

Theorem 2.5.3 (continued 1)

Proof (continued). . . . we have the conditional expectation

a + bx = E [Y | x ] =

∫ ∞

−∞
yfY |X (y | x) dy =

∫ ∞

−∞

yf (x , y)

f1(x)
dy

=
1

f1(x)

∫ ∞

−∞
yf (x , y) dy .

Hence

∫ ∞

−∞
yf (x , y) dy = (a + bx)f1(x). (2.56)

By the definition of E [Y ] (see Section 2.1),

E [Y ] =

∫ ∞

−∞

∫ ∞

−∞
yf (x , y) dx dy so from (2.56) we have

E [Y ] =

∫ ∞

−∞

∫ ∞

−∞
yf (x , y) dy =

∫ ∞

−∞
(a + bx)f1(x) dx

= a

∫ ∞

−∞
f1(x) dx + b

∫ ∞

−∞
xf1(x) dx = a + bE [X ] . . .
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Theorem 2.5.3

Theorem 2.5.3 (continued 2)

Proof (continued). or µ2 = a + bµ1 where µ1 = E [X ] and µ2 = E [Y ].
Also from (2.56) (multiplying both sides by x and then integrating with
respect to x):∫ ∞

−∞

∫ ∞

−∞
xyf (x , y) dy dx =

∫ ∞

−∞
(ax + bx2)f1(x) dx

= a

∫ ∞

−∞
xf1(x) dx + b

∫ ∞

−∞
x2f1(x) dx

or E [XY ] = aE [X ] + bE [X 2]. Now E [XY ] = µ1µ2 + ρσ1σ2 by Note 2.5.B
and E [X 2] = σ2

1 + µ2
1 by Note 1.9.A so that we now have

µ1µ2 + ρσ1σ2 = aµ1 + b(σ2
1 + µ2

1). We can now solve for a and b using the
two linear equations a + µ1b = µ2 and µ1a + (σ2

1 + µ2
1)b = µ1µ2 + ρσ1σ2

to get a = µ2 − ρµ1σ2/σ1 and b = ρσ2/σ1. Therefore,

E [Y | x ] = a + bx = µ2 = ρµ1σ2/σ1 + ρσ2x/σ1 = µ2 + ρ
σ2

σ1
(x − µ1),

or E [Y | X ] = µ2 + ρ
σ2

σ1
(X − µ1), as claimed.
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Theorem 2.5.3

Theorem 2.5.3 (continued 3)

Proof (continued). Next, we consider var(Y | x). To do so, we need the
conditional mean of Y given x which we see from above is

E [Y | x ] = µ2 + ρ
σ2

σ1
(x − µ1). We have

var(Y | x) =

∫ ∞

−∞

(
y −

(
µ2 + ρ

σ2

σ1
(x − µ1)

))2

f2|1(y | x) dy

=
1

f1(x)

∫ ∞

−∞

(
y − µ2 − ρ

σ2

σ1
(x − µ1)

)2

f (x , y) dy .

So

E [var(Y | X )] =

∫ ∞

−∞
var(Y | x)f1(x) dx

=

∫ ∞

−∞

(
1

f1(x)

∫ ∞

−∞

(
y − µ2 − ρ

σ2

σ1
(x − µ1)

)2

f (x , y) dy

)
f1(x) dx
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Theorem 2.5.3

Theorem 2.5.3 (continued 4)

Proof (continued). . . .

=

∫ ∞

−∞

∫ ∞

−∞

(
y − µ2 − ρ

σ2

σ1
(x − µ1)

)2

f (x , y) dy dx

=

∫ ∞

−∞

∫ ∞

−∞

(
(y = µ2)

2 − 2ρ
σ2

σ1
(x − µ1)(y − µ2) + ρ2 σ2

2

σ2
1

(x − µ1)
2

)
dy dx

= E [(Y − µ2)
2]− 2ρ

σ2

σ1
E [(X − µ1)(Y − µ2)] + ρ2 σ1

2

σ2
1

E [(X − µ1)
2]

= σ2
2 − 2ρ

σ2

σ1
cov(X ,Y ) + ρ2 σ2

2

σ2
1

σ2
1

= σ2
2 − 2ρ

σ2

σ1
(ρσ1σ2) + ρ2σ2

2 since, by Definition 2.5.2, ρ =
cov(X ,Y )

σ1σ2

= σ2 − 2ρ2σ2
2 + ρ2σ2

2 = σ2
2(1− 2ρ2 + ρ2) = σ2

2(1− ρ2),

as claimed.
() Mathematical Statistics 1 November 6, 2019 10 / 10


	Theorem 2.5.1
	Theorem 2.5.2
	Theorem 2.5.3

