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Chapter 2. Multivariate Distributions
2.5. The Correlation Coefficient—Proofs of Theorems
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Theorem 2.5.1

Theorem 2.5.1. For all jointly distributed random variables (X, Y') whose
correlation coefficient p exists (so that o1 > 0 and o2 > 0 by the definition
of p), we have —1 < p < 1.
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Theorem 2.5.1

Theorem 2.5.1. For all jointly distributed random variables (X, Y') whose
correlation coefficient p exists (so that o1 > 0 and o2 > 0 by the definition
of p), we have —1 < p < 1.

Proof. With E[X] = p; and E[Y] = 2, consider the polynomial in v
given by

h(v) = E[((X = pa) + v(Y = 12))?].
Then h(v) > 0 for all v. Hence the discriminant of h(v) is less than or

equal to 0 (for if the discriminant is positive then h has two roots and h is
negative between those two roots).
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Theorem 2.5.1 (continued)

Proof (continued). Since E is linear (by Theorem 1.8.2) we have

h(v)

E((X — p2) +v(Y — p2))?]

E[(X — m)® +2v(X — ) (Y = ) + V(Y — 12)?]

E[(x — m)?] + 2vE[(X — pa)(Y — p2)] + VZE[(Y — pi2)’]
o2 +2vcov(X, Y) 4 v2o3 by Definition 2.5.1

0’% + 2vpoioo + vzag by Definition 2.5.2.

So the discriminant is nonpositive then 4(p? — 1)o203 <0 or p>—1<0
or |p| <1, as claimed. O
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Theorem 2.5.2

Theorem 2.5.2. If X and Y are independent random variables then
cov(X,Y) =0 and hence p = 0.
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Theorem 2.5.2

Theorem 2.5.2

Theorem 2.5.2. If X and Y are independent random variables then
cov(X,Y) =0 and hence p = 0.

Proof. If X and Y are independent then by Theorem 2.4.2 we have
E[XY] = E[X]E[Y]. So by Note 2.5.A,

cov(X,Y) = E[XY] — p1po = pip2 — pp2 = 0,

as claimed.

O
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Theorem 2.5.3

Theorem 2.5.3. Suppose (X, Y) have a joint distribution with the
variances of X and Y finite and positive. Denote the means and variances

of X and Y by 1, po and O'%, a%, respectively, and let p be the correlation
coefficient between X and Y. If E[Y | X] is linear in X then

ELY | Xluz + 2 (X — pr) and E[Var(Y | X)] = 03(1 - 7).
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Theorem 2.5.3

Theorem 2.5.3. Suppose (X, Y) have a joint distribution with the
variances of X and Y finite and positive. Denote the means and variances

of X and Y by 1, po and O'%, a%, respectively, and let p be the correlation
coefficient between X and Y. If E[Y | X] is linear in X then

ELY | Xluz + 2 (X — pr) and E[Var(Y | X)] = 03(1 - 7).

o

Proof. We give a proof for the continuous case and leave the discrete case
as an exercise. Suppose E[Y | X] is linear in X, say E[Y | x] = a+ bx. By
the definition of conditional probability function (see Section 2.3) we have

and so by the definition of expected value (Definition 1.8.1) we have ...
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Theorem 2.5.3 (continued 1)

Proof (continued). ...we have the conditional expectation
o0 0 yf(x,
st b= 1= [ty ey = [ X0,
—00 —00 fl(X)
= " yxy)d
=— X, .
A (x) _ooy y)ay
Hence / yf(x,y)dy = (a+ bx)fi(x). (2.56)
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Theorem 2.5.3 (continued 1)

Proof (continued). ...we have the conditional expectation
o0 0 yf(x,
a+bX=E[Y|X]=/ ny|x(y!X)dy=/ o) g,
—00 —00 fl(X)
= " yxy)d
=— X, .
A0 ) y y)ay
Hence / yf(x,y)dy = (a+ bx)fi(x). (2.56)

By the definition of E[Y] (see Section 2.1),
E[Y] = / / yf(x,y) dx dy so from (2.56) we have

—00 J —00

E[Y]:/_Z/_:yf(x,y)dy:/_Z(aerx)fl(x)dx

:a/oO fl(x)dXer/Oo xfi(x) dx = a+ bE[X]...

—0o0 —0Q0
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Theorem 2.5.3 (continued 2)

Proof (continued). or o = a+ buy where pg = E[X] and puo = E[Y].
Also from (2.56) (multiplying both sides by x and then integrating with
respect to x):

/ / xyf(x,y)dy dx = / (ax + bx?)fi(x) dx

:a/ xfi(x) dx+b/ x*f(x) dx

—o0 —o0
or E[XY] = aE[X] + bE[X?]. Now E[XY] = pip2 + po1o2 by Note 2.5.B
and E[X?] = 0% + u? by Note 1.9.A so that we now have
pipo + poroa = ap1 + b(of + ).
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Theorem 2.5.3 (continued 2)

Proof (continued). or o = a+ buy where pg = E[X] and puo = E[Y].
Also from (2 56) (multiplying both sides by x and then integrating with
respect to x)

/ / xyf(x,y) dydx—/_ (ax + bx?)f(x) dx

:a/ooxfl( )dx+b/oo W2Fi (x) dx

—0o0
or E[XY] = aE[X] + bE[X?]. Now E[XY] = pip2 + po1o2 by Note 2.5.B
and E[X?] = 0% + u? by Note 1.9.A so that we now have
papa + poroa = apg + b(o? + p3). We can now solve for a and b using the
two linear equations a + p1b = 2 and pia + (O’% + u%)b = p1ip2 + poio2
to get a = up — pp1o2/o1 and b = poy/oy1. Therefore,

o
E[Y | x| =a+ bx = M2 = pp102/01 + poax/o1 = iz + ﬂ;i(x — (1),

or E[Y | X] = pu2 + p (X (1), as claimed.
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Theorem 2.5.3

Theorem 2.5.3 (continued 3)

Proof (continued). Next, we consider var(Y | x). To do so, we need the
conditional mean of Y given x which we see from above is
o
E[Y | x] = p2 + pa—z(x — p1). We have
1

(v 1) = [ (v (s 20 u1)>)2 iy [ %) dy
fl(lx) /O; <y — 2 — p%(x - m))2 f(x,y)dy.

o

Elvar(Y | X)] = / var(Y | x)fi(x) dx

— 00

= /_Z <f1(1x) /_: <y—uz —pgi(x—ﬂl)>2f(x7y) dy) fi(x) dx
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Theorem 2.5.3

Theorem 2.5.3 (continued 4)

Proof (continued). ...

// (y o — p (x—m))Qf(x,y)dydx
-/ ((yzuzf—2pjj(x—m)(y—u2)+p2f(x—m>2) dy dx

g
= LY o))~ 202X )Y )] 7 %E[(x Y

2 g2 203 2
=05 — 2p0—1cov(X, Y)+p 201
1

X, Y
=05 — 2p (p0'10'2) + p203 since, by Definition 2.5.2, p = cov(X. Y)
0102
=02—2p a3 + pPos = a5(1 = 2p° + p?) = o3(1 — p°),
as claimed. ]
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