Mathematical Statistics 1

Chapter 2. Multivariate Distributions

2.5. The Correlation Coefficient—Proofs of Theorems

Table of contents

(1) Theorem 2.5.1
(2) Theorem 2.5.2
(3) Theorem 2.5.3

Theorem 2.5.1

Theorem 2.5.1. For all jointly distributed random variables (X, Y) whose correlation coefficient ρ exists (so that $\sigma_{1}>0$ and $\sigma_{2}>0$ by the definition of ρ), we have $-1 \leq \rho \leq 1$.

Proof. With $E[X]=\mu_{1}$ and $E[Y]=\mu_{2}$, consider the polynomial in v given by

$$
h(v)=E\left[\left(\left(X-\mu_{1}\right)+v\left(Y-\mu_{2}\right)\right)^{2}\right] .
$$

Then $h(v) \geq 0$ for all v. Hence the discriminant of $h(v)$ is less than or equal to 0 (for if the discriminant is positive then h has two roots and h is negative between those two roots).

Theorem 2.5.1

Theorem 2.5.1. For all jointly distributed random variables (X, Y) whose correlation coefficient ρ exists (so that $\sigma_{1}>0$ and $\sigma_{2}>0$ by the definition of ρ), we have $-1 \leq \rho \leq 1$.

Proof. With $E[X]=\mu_{1}$ and $E[Y]=\mu_{2}$, consider the polynomial in v given by

$$
h(v)=E\left[\left(\left(X-\mu_{1}\right)+v\left(Y-\mu_{2}\right)\right)^{2}\right] .
$$

Then $h(v) \geq 0$ for all v. Hence the discriminant of $h(v)$ is less than or equal to 0 (for if the discriminant is positive then h has two roots and h is negative between those two roots).

Theorem 2.5.1 (continued)

Proof (continued). Since E is linear (by Theorem 1.8.2) we have

$$
\begin{aligned}
h(v) & =E\left[\left(\left(X-\mu_{1}\right)+v\left(Y-\mu_{2}\right)\right)^{2}\right] \\
& =E\left[\left(X-\mu_{1}\right)^{2}+2 v\left(X-\mu_{1}\right)\left(Y-\mu_{2}\right)+v^{2}\left(Y-\mu_{2}\right)^{2}\right] \\
& =E\left[\left(x-\mu_{1}\right)^{2}\right]+2 v E\left[\left(X-\mu_{1}\right)\left(Y-\mu_{2}\right)\right]+v^{2} E\left[\left(Y-\mu_{2}\right)^{2}\right] \\
& =\sigma_{1}^{2}+2 v \operatorname{cov}(X, Y)+v^{2} \sigma_{2}^{2} \text { by Definition 2.5.1 } \\
& =\sigma_{1}^{2}+2 v \rho \sigma_{1} \sigma_{2}+v^{2} \sigma_{2}^{2} \text { by Definition 2.5.2. }
\end{aligned}
$$

So the discriminant is nonpositive then $4\left(\rho^{2}-1\right) \sigma_{1}^{2} \sigma_{2}^{2} \leq 0$ or $\rho^{2}-1 \leq 0$ or $|\rho| \leq 1$, as claimed.

Theorem 2.5.2

Theorem 2.5.2. If X and Y are independent random variables then $\operatorname{cov}(X, Y)=0$ and hence $\rho=0$.

Proof. If X and Y are independent then by Theorem 2.4.2 we have $E[X Y]=E[X] E[Y]$. So by Note 2.5.A,
$\operatorname{cov}(X, Y)=E[X Y]-\mu_{1} \mu_{2}=\mu_{1} \mu_{2}-\mu_{1} \mu_{2}=0$,

Theorem 2.5.2

Theorem 2.5.2. If X and Y are independent random variables then $\operatorname{cov}(X, Y)=0$ and hence $\rho=0$.

Proof. If X and Y are independent then by Theorem 2.4.2 we have $E[X Y]=E[X] E[Y]$. So by Note 2.5.A,

$$
\operatorname{cov}(X, Y)=E[X Y]-\mu_{1} \mu_{2}=\mu_{1} \mu_{2}-\mu_{1} \mu_{2}=0
$$

as claimed.

Theorem 2.5.3

Theorem 2.5.3. Suppose (X, Y) have a joint distribution with the variances of X and Y finite and positive. Denote the means and variances of X and Y by μ_{1}, μ_{2} and $\sigma_{1}^{2}, \sigma_{2}^{2}$, respectively, and let ρ be the correlation coefficient between X and Y. If $E[Y \mid X]$ is linear in X then

$$
E[Y \mid X] \mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(X-\mu_{1}\right) \text { and } E[\operatorname{Var}(Y \mid X)]=\sigma_{2}^{2}\left(1-\rho^{2}\right)
$$

Proof. We give a proof for the continuous case and leave the discrete case as an exercise. Suppose $E[Y \mid X]$ is linear in X, say $E[Y \mid x]=a+b x$. By the definition of conditional probability function (see Section 2.3) we have

$$
f_{Y \mid X}(y \mid x)=f_{2 \mid 1}(y \mid x)=\frac{f_{X, Y}}{(x, y)} f_{X}(x)=\frac{f(x, y)}{f_{1}(x)}
$$

Theorem 2.5.3

Theorem 2.5.3. Suppose (X, Y) have a joint distribution with the variances of X and Y finite and positive. Denote the means and variances of X and Y by μ_{1}, μ_{2} and $\sigma_{1}^{2}, \sigma_{2}^{2}$, respectively, and let ρ be the correlation coefficient between X and Y. If $E[Y \mid X]$ is linear in X then

$$
E[Y \mid X] \mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(X-\mu_{1}\right) \text { and } E[\operatorname{Var}(Y \mid X)]=\sigma_{2}^{2}\left(1-\rho^{2}\right)
$$

Proof. We give a proof for the continuous case and leave the discrete case as an exercise. Suppose $E[Y \mid X]$ is linear in X, say $E[Y \mid x]=a+b x$. By the definition of conditional probability function (see Section 2.3) we have

$$
f_{Y \mid X}(y \mid x)=f_{2 \mid 1}(y \mid x)=\frac{f_{X, Y}}{(x, y)} f_{X}(x)=\frac{f(x, y)}{f_{1}(x)}
$$

and so by the definition of expected value (Definition 1.8.1) we have...

Theorem 2.5.3 (continued 1)

Proof (continued). ... we have the conditional expectation

$$
\begin{gather*}
a+b x=E[Y \mid x]=\int_{-\infty}^{\infty} y f_{Y \mid X}(y \mid x) d y=\int_{-\infty}^{\infty} \frac{y f(x, y)}{f_{1}(x)} d y \\
=\frac{1}{f_{1}(x)} \int_{-\infty}^{\infty} y f(x, y) d y . \\
\int_{-\infty}^{\infty} y f(x, y) d y=(a+b x) f_{1}(x) \tag{2.56}
\end{gather*}
$$

Hence
By the definition of $E[Y]$ (see Section 2.1),
$E[Y]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) d x d y$ so from (2.56) we have

$$
\begin{aligned}
& E[Y]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) d y=\int_{-\infty}^{\infty}(a+b x) f_{1}(x) d x \\
& =a \int_{-\infty}^{\infty} f_{1}(x) d x+b \int_{-\infty}^{\infty} x f_{1}(x) d x=a+b E[X] \ldots
\end{aligned}
$$

Theorem 2.5.3 (continued 1)

Proof (continued). ... we have the conditional expectation

$$
\begin{gather*}
a+b x=E[Y \mid x]=\int_{-\infty}^{\infty} y f_{Y \mid X}(y \mid x) d y=\int_{-\infty}^{\infty} \frac{y f(x, y)}{f_{1}(x)} d y \\
=\frac{1}{f_{1}(x)} \int_{-\infty}^{\infty} y f(x, y) d y \\
\int_{-\infty}^{\infty} y f(x, y) d y=(a+b x) f_{1}(x) \tag{2.56}
\end{gather*}
$$

Hence
By the definition of $E[Y]$ (see Section 2.1),

$$
\begin{aligned}
& E[Y]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) d x d y \text { so from (2.56) we have } \\
& \quad E[Y]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) d y=\int_{-\infty}^{\infty}(a+b x) f_{1}(x) d x \\
& \quad=a \int_{-\infty}^{\infty} f_{1}(x) d x+b \int_{-\infty}^{\infty} x f_{1}(x) d x=a+b E[X] \ldots
\end{aligned}
$$

Theorem 2.5.3 (continued 2)

Proof (continued). or $\mu_{2}=a+b \mu_{1}$ where $\mu_{1}=E[X]$ and $\mu_{2}=E[Y]$. Also from (2.56) (multiplying both sides by x and then integrating with respect to x):

$$
\begin{gathered}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f(x, y) d y d x=\int_{-\infty}^{\infty}\left(a x+b x^{2}\right) f_{1}(x) d x \\
=a \int_{-\infty}^{\infty} x f_{1}(x) d x+b \int_{-\infty}^{\infty} x^{2} f_{1}(x) d x
\end{gathered}
$$

or $E[X Y]=a E[X]+b E\left[X^{2}\right]$. Now $E[X Y]=\mu_{1} \mu_{2}+\rho \sigma_{1} \sigma_{2}$ by Note 2.5.B and $E\left[X^{2}\right]=\sigma_{1}^{2}+\mu_{1}^{2}$ by Note 1.9.A so that we now have $\mu_{1} \mu_{2}+\rho \sigma_{1} \sigma_{2}=a \mu_{1}+b\left(\sigma_{1}^{2}+\mu_{1}^{2}\right)$. We can now solve for a and b using the two linear equations $a+\mu_{1} b=\mu_{2}$ and $\mu_{1} a+\left(\sigma_{1}^{2}+\mu_{1}^{2}\right) b=\mu_{1} \mu_{2}+\rho \sigma_{1} \sigma_{2}$ to get $a=\mu_{2}-\rho \mu_{1} \sigma_{2} / \sigma_{1}$ and $b=\rho \sigma_{2} / \sigma_{1}$. Therefore,

$$
E[Y \mid x]=a+b x=\mu_{2}=\rho \mu_{1} \sigma_{2} / \sigma_{1}+\rho \sigma_{2} x / \sigma_{1}=\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right),
$$

or $E[Y \mid X]=\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(X-\mu_{1}\right)$, as claimed.

Theorem 2.5.3 (continued 2)

Proof (continued). or $\mu_{2}=a+b \mu_{1}$ where $\mu_{1}=E[X]$ and $\mu_{2}=E[Y]$. Also from (2.56) (multiplying both sides by x and then integrating with respect to x):

$$
\begin{gathered}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f(x, y) d y d x=\int_{-\infty}^{\infty}\left(a x+b x^{2}\right) f_{1}(x) d x \\
\quad=a \int_{-\infty}^{\infty} x f_{1}(x) d x+b \int_{-\infty}^{\infty} x^{2} f_{1}(x) d x
\end{gathered}
$$

or $E[X Y]=a E[X]+b E\left[X^{2}\right]$. Now $E[X Y]=\mu_{1} \mu_{2}+\rho \sigma_{1} \sigma_{2}$ by Note 2.5.B and $E\left[X^{2}\right]=\sigma_{1}^{2}+\mu_{1}^{2}$ by Note 1.9.A so that we now have $\mu_{1} \mu_{2}+\rho \sigma_{1} \sigma_{2}=a \mu_{1}+b\left(\sigma_{1}^{2}+\mu_{1}^{2}\right)$. We can now solve for a and b using the two linear equations $a+\mu_{1} b=\mu_{2}$ and $\mu_{1} a+\left(\sigma_{1}^{2}+\mu_{1}^{2}\right) b=\mu_{1} \mu_{2}+\rho \sigma_{1} \sigma_{2}$ to get $a=\mu_{2}-\rho \mu_{1} \sigma_{2} / \sigma_{1}$ and $b=\rho \sigma_{2} / \sigma_{1}$. Therefore,

$$
E[Y \mid x]=a+b x=\mu_{2}=\rho \mu_{1} \sigma_{2} / \sigma_{1}+\rho \sigma_{2} x / \sigma_{1}=\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right)
$$

or $E[Y \mid X]=\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(X-\mu_{1}\right)$, as claimed.

Theorem 2.5.3 (continued 3)

Proof (continued). Next, we consider $\operatorname{var}(Y \mid x)$. To do so, we need the conditional mean of Y given x which we see from above is $E[Y \mid x]=\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right)$. We have

$$
\begin{aligned}
& \operatorname{var}(Y \mid x)=\int_{-\infty}^{\infty}\left(y-\left(\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right)\right)\right)^{2} f_{2 \mid 1}(y \mid x) d y \\
& =\frac{1}{f_{1}(x)} \int_{-\infty}^{\infty}\left(y-\mu_{2}-\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right)\right)^{2} f(x, y) d y
\end{aligned}
$$

So

$$
\begin{gathered}
E[\operatorname{var}(Y \mid X)]=\int_{-\infty}^{\infty} \operatorname{var}(Y \mid x) f_{1}(x) d x \\
=\int_{-\infty}^{\infty}\left(\frac{1}{f_{1}(x)} \int_{-\infty}^{\infty}\left(y-\mu_{2}-\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right)\right)^{2} f(x, y) d y\right) f_{1}(x) d x
\end{gathered}
$$

Theorem 2.5.3 (continued 4)

Proof (continued). ...

$$
\begin{gathered}
=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(y-\mu_{2}-\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right)\right)^{2} f(x, y) d y d x \\
=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(\left(y=\mu_{2}\right)^{2}-2 \rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right)\left(y-\mu_{2}\right)+\rho^{2} \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}\left(x-\mu_{1}\right)^{2}\right) d y d x \\
=E\left[\left(Y-\mu_{2}\right)^{2}\right]-2 \rho \frac{\sigma_{2}}{\sigma_{1}} E\left[\left(X-\mu_{1}\right)\left(Y-\mu_{2}\right)\right]+\rho^{2} \frac{\sigma_{2}^{1}}{\sigma_{1}^{2}} E\left[\left(X-\mu_{1}\right)^{2}\right] \\
=\sigma_{2}^{2}-2 \rho \frac{\sigma_{2}}{\sigma_{1}} \operatorname{cov}(X, Y)+\rho^{2} \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}} \sigma_{1}^{2} \\
=\sigma_{2}^{2}-2 \rho \frac{\sigma_{2}}{\sigma_{1}}\left(\rho \sigma_{1} \sigma_{2}\right)+\rho^{2} \sigma_{2}^{2} \text { since, by Definition 2.5.2, } \rho=\frac{\operatorname{cov}(X, Y)}{\sigma_{1} \sigma_{2}} \\
=\sigma_{2}-2 \rho^{2} \sigma_{2}^{2}+\rho^{2} \sigma_{2}^{2}=\sigma_{2}^{2}\left(1-2 \rho^{2}+\rho^{2}\right)=\sigma_{2}^{2}\left(1-\rho^{2}\right),
\end{gathered}
$$

as claimed.

