## Mathematical Statistics 1

#### **Chapter 2. Multivariate Distributions** 2.5. The Correlation Coefficient—Proofs of Theorems





### 2 Theorem 2.5.2



**Theorem 2.5.1.** For all jointly distributed random variables (X, Y) whose correlation coefficient  $\rho$  exists (so that  $\sigma_1 > 0$  and  $\sigma_2 > 0$  by the definition of  $\rho$ ), we have  $-1 \le \rho \le 1$ .

**Proof.** With  $E[X] = \mu_1$  and  $E[Y] = \mu_2$ , consider the polynomial in v given by

$$h(v) = E[((X - \mu_1) + v(Y - \mu_2))^2].$$

Then  $h(v) \ge 0$  for all v. Hence the discriminant of h(v) is less than or equal to 0 (for if the discriminant is positive then h has two roots and h is negative between those two roots).

**Theorem 2.5.1.** For all jointly distributed random variables (X, Y) whose correlation coefficient  $\rho$  exists (so that  $\sigma_1 > 0$  and  $\sigma_2 > 0$  by the definition of  $\rho$ ), we have  $-1 \le \rho \le 1$ .

**Proof.** With  $E[X] = \mu_1$  and  $E[Y] = \mu_2$ , consider the polynomial in v given by

$$h(v) = E[((X - \mu_1) + v(Y - \mu_2))^2].$$

Then  $h(v) \ge 0$  for all v. Hence the discriminant of h(v) is less than or equal to 0 (for if the discriminant is positive then h has two roots and h is negative between those two roots).

# Theorem 2.5.1 (continued)

**Proof (continued).** Since E is linear (by Theorem 1.8.2) we have

$$\begin{split} h(v) &= E[((X - \mu_1) + v(Y - \mu_2))^2] \\ &= E[(X - \mu_1)^2 + 2v(X - \mu_1)(Y - \mu_2) + v^2(Y - \mu_2)^2] \\ &= E[(X - \mu_1)^2] + 2vE[(X - \mu_1)(Y - \mu_2)] + v^2E[(Y - \mu_2)^2] \\ &= \sigma_1^2 + 2v \text{cov}(X, Y) + v^2 \sigma_2^2 \text{ by Definition 2.5.1} \\ &= \sigma_1^2 + 2v \rho \sigma_1 \sigma_2 + v^2 \sigma_2^2 \text{ by Definition 2.5.2.} \end{split}$$

So the discriminant is nonpositive then  $4(\rho^2 - 1)\sigma_1^2\sigma_2^2 \le 0$  or  $\rho^2 - 1 \le 0$  or  $|\rho| \le 1$ , as claimed.

**Theorem 2.5.2.** If X and Y are independent random variables then cov(X, Y) = 0 and hence  $\rho = 0$ .

**Proof.** If X and Y are independent then by Theorem 2.4.2 we have E[XY] = E[X]E[Y]. So by Note 2.5.A,

 $cov(X, Y) = E[XY] - \mu_1\mu_2 = \mu_1\mu_2 - \mu_1\mu_2 = 0,$ 

as claimed.

**Theorem 2.5.2.** If X and Y are independent random variables then cov(X, Y) = 0 and hence  $\rho = 0$ .

**Proof.** If X and Y are independent then by Theorem 2.4.2 we have E[XY] = E[X]E[Y]. So by Note 2.5.A,

$$cov(X, Y) = E[XY] - \mu_1\mu_2 = \mu_1\mu_2 - \mu_1\mu_2 = 0,$$

as claimed.

#### Theorem 2.5.3

**Theorem 2.5.3.** Suppose (X, Y) have a joint distribution with the variances of X and Y finite and positive. Denote the means and variances of X and Y by  $\mu_1$ ,  $\mu_2$  and  $\sigma_1^2$ ,  $\sigma_2^2$ , respectively, and let  $\rho$  be the correlation coefficient between X and Y. If E[Y | X] is linear in X then

$$E[Y \mid X]\mu_2 + 
ho rac{\sigma_2}{\sigma_1}(X - \mu_1) ext{ and } E[Var(Y \mid X)] = \sigma_2^2(1 - 
ho^2).$$

**Proof.** We give a proof for the continuous case and leave the discrete case as an exercise. Suppose E[Y | X] is linear in X, say E[Y | x] = a + bx. By the definition of conditional probability function (see Section 2.3) we have

$$f_{Y|X}(y \mid x) = f_{2|1}(y \mid x) = \frac{f_{X,Y}}{(x,y)} f_X(x) = \frac{f(x,y)}{f_1(x)}$$

and so by the definition of expected value (Definition 1.8.1) we have ...

#### Theorem 2.5.3

**Theorem 2.5.3.** Suppose (X, Y) have a joint distribution with the variances of X and Y finite and positive. Denote the means and variances of X and Y by  $\mu_1$ ,  $\mu_2$  and  $\sigma_1^2$ ,  $\sigma_2^2$ , respectively, and let  $\rho$  be the correlation coefficient between X and Y. If E[Y | X] is linear in X then

$$E[Y \mid X]\mu_2 + 
ho rac{\sigma_2}{\sigma_1}(X - \mu_1) ext{ and } E[\operatorname{Var}(Y \mid X)] = \sigma_2^2(1 - 
ho^2).$$

**Proof.** We give a proof for the continuous case and leave the discrete case as an exercise. Suppose E[Y | X] is linear in X, say E[Y | x] = a + bx. By the definition of conditional probability function (see Section 2.3) we have

$$f_{Y|X}(y \mid x) = f_{2|1}(y \mid x) = \frac{f_{X,Y}}{(x,y)}f_X(x) = \frac{f(x,y)}{f_1(x)}$$

and so by the definition of expected value (Definition 1.8.1) we have ...

## Theorem 2.5.3 (continued 1)

Proof (continued). ... we have the conditional expectation

$$a + bx = E[Y \mid x] = \int_{-\infty}^{\infty} y f_{Y|X}(y \mid x) \, dy = \int_{-\infty}^{\infty} \frac{y f(x, y)}{f_1(x)} \, dy$$
$$= \frac{1}{f_1(x)} \int_{-\infty}^{\infty} y f(x, y) \, dy.$$
$$= \int_{-\infty}^{\infty} y f(x, y) \, dy = (a + bx) f_1(x).$$
(2.56)

Hence

By the definition of E[Y] (see Section 2.1),  $E[Y] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf(x, y) dx dy$  so from (2.56) we have

$$E[Y] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf(x, y) \, dy = \int_{-\infty}^{\infty} (a + bx)f_1(x) \, dx$$
$$= a \int_{-\infty}^{\infty} f_1(x) \, dx + b \int_{-\infty}^{\infty} xf_1(x) \, dx = a + bE[X] \dots$$

## Theorem 2.5.3 (continued 1)

**Proof (continued).** ... we have the conditional expectation

$$a + bx = E[Y \mid x] = \int_{-\infty}^{\infty} y f_{Y|X}(y \mid x) \, dy = \int_{-\infty}^{\infty} \frac{y f(x, y)}{f_1(x)} \, dy$$
$$= \frac{1}{f_1(x)} \int_{-\infty}^{\infty} y f(x, y) \, dy.$$
nce
$$\int_{-\infty}^{\infty} y f(x, y) \, dy = (a + bx) f_1(x).$$
(2.56)

He

By the definition of E[Y] (see Section 2.1),

 $E[Y] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf(x, y) dx dy$  so from (2.56) we have

$$E[Y] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf(x, y) \, dy = \int_{-\infty}^{\infty} (a + bx)f_1(x) \, dx$$
$$= a \int_{-\infty}^{\infty} f_1(x) \, dx + b \int_{-\infty}^{\infty} xf_1(x) \, dx = a + bE[X] \dots$$

### Theorem 2.5.3 (continued 2)

**Proof (continued).** or  $\mu_2 = a + b\mu_1$  where  $\mu_1 = E[X]$  and  $\mu_2 = E[Y]$ . Also from (2.56) (multiplying both sides by x and then integrating with respect to x):

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf(x,y) \, dy \, dx = \int_{-\infty}^{\infty} (ax + bx^2) f_1(x) \, dx$$
$$= a \int_{-\infty}^{\infty} xf_1(x) \, dx + b \int_{-\infty}^{\infty} x^2 f_1(x) \, dx$$

or  $E[XY] = aE[X] + bE[X^2]$ . Now  $E[XY] = \mu_1\mu_2 + \rho\sigma_1\sigma_2$  by Note 2.5.B and  $E[X^2] = \sigma_1^2 + \mu_1^2$  by Note 1.9.A so that we now have  $\mu_1\mu_2 + \rho\sigma_1\sigma_2 = a\mu_1 + b(\sigma_1^2 + \mu_1^2)$ . We can now solve for *a* and *b* using the two linear equations  $a + \mu_1 b = \mu_2$  and  $\mu_1 a + (\sigma_1^2 + \mu_1^2)b = \mu_1\mu_2 + \rho\sigma_1\sigma_2$ to get  $a = \mu_2 - \rho\mu_1\sigma_2/\sigma_1$  and  $b = \rho\sigma_2/\sigma_1$ . Therefore,

$$E[Y \mid x] = a + bx = \mu_2 = \rho \mu_1 \sigma_2 / \sigma_1 + \rho \sigma_2 x / \sigma_1 = \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x - \mu_1),$$
  
or  $E[Y \mid X] = \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (X - \mu_1)$ , as claimed.

### Theorem 2.5.3 (continued 2)

**Proof (continued).** or  $\mu_2 = a + b\mu_1$  where  $\mu_1 = E[X]$  and  $\mu_2 = E[Y]$ . Also from (2.56) (multiplying both sides by x and then integrating with respect to x):

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf(x,y) \, dy \, dx = \int_{-\infty}^{\infty} (ax + bx^2) f_1(x) \, dx$$
$$= a \int_{-\infty}^{\infty} xf_1(x) \, dx + b \int_{-\infty}^{\infty} x^2 f_1(x) \, dx$$

or  $E[XY] = aE[X] + bE[X^2]$ . Now  $E[XY] = \mu_1\mu_2 + \rho\sigma_1\sigma_2$  by Note 2.5.B and  $E[X^2] = \sigma_1^2 + \mu_1^2$  by Note 1.9.A so that we now have  $\mu_1\mu_2 + \rho\sigma_1\sigma_2 = a\mu_1 + b(\sigma_1^2 + \mu_1^2)$ . We can now solve for *a* and *b* using the two linear equations  $a + \mu_1 b = \mu_2$  and  $\mu_1 a + (\sigma_1^2 + \mu_1^2)b = \mu_1\mu_2 + \rho\sigma_1\sigma_2$ to get  $a = \mu_2 - \rho\mu_1\sigma_2/\sigma_1$  and  $b = \rho\sigma_2/\sigma_1$ . Therefore,

$$E[Y \mid x] = a + bx = \mu_2 = \rho \mu_1 \sigma_2 / \sigma_1 + \rho \sigma_2 x / \sigma_1 = \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x - \mu_1),$$
  
or  $E[Y \mid X] = \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (X - \mu_1)$ , as claimed.

## Theorem 2.5.3 (continued 3)

**Proof (continued).** Next, we consider var(Y | x). To do so, we need the conditional mean of Y given x which we see from above is  $E[Y | x] = \mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x - \mu_1)$ . We have

$$\operatorname{var}(Y \mid x) = \int_{-\infty}^{\infty} \left( y - \left( \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x - \mu_1) \right) \right)^2 f_{2|1}(y \mid x) \, dy$$

$$=\frac{1}{f_1(x)}\int_{-\infty}^{\infty}\left(y-\mu_2-\rho\frac{\sigma_2}{\sigma_1}(x-\mu_1)\right)^2f(x,y)\,dy.$$

$$E[\operatorname{var}(Y \mid X)] = \int_{-\infty}^{\infty} \operatorname{var}(Y \mid x) f_1(x) \, dx$$

$$=\int_{-\infty}^{\infty}\left(\frac{1}{f_1(x)}\int_{-\infty}^{\infty}\left(y-\mu_2-\rho\frac{\sigma_2}{\sigma_1}(x-\mu_1)\right)^2f(x,y)\,dy\right)f_1(x)\,dx$$

So

# Theorem 2.5.3 (continued 4)

### Proof (continued). ...

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left( y - \mu_2 - \rho \frac{\sigma_2}{\sigma_1} (x - \mu_1) \right)^2 f(x, y) \, dy \, dx$$
  

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left( (y = \mu_2)^2 - 2\rho \frac{\sigma_2}{\sigma_1} (x - \mu_1) (y - \mu_2) + \rho^2 \frac{\sigma_2^2}{\sigma_1^2} (x - \mu_1)^2 \right) \, dy \, dx$$
  

$$= E[(Y - \mu_2)^2] - 2\rho \frac{\sigma_2}{\sigma_1} E[(X - \mu_1)(Y - \mu_2)] + \rho^2 \frac{\sigma_2^2}{\sigma_1^2} E[(X - \mu_1)^2]$$
  

$$= \sigma_2^2 - 2\rho \frac{\sigma_2}{\sigma_1} \operatorname{cov}(X, Y) + \rho^2 \frac{\sigma_2^2}{\sigma_1^2} \sigma_1^2$$
  

$$= \sigma_2^2 - 2\rho \frac{\sigma_2}{\sigma_1} (\rho \sigma_1 \sigma_2) + \rho^2 \sigma_2^2 \text{ since, by Definition 2.5.2, } \rho = \frac{\operatorname{cov}(X, Y)}{\sigma_1 \sigma_2}$$
  

$$= \sigma_2 - 2\rho^2 \sigma_2^2 + \rho^2 \sigma_2^2 = \sigma_2^2 (1 - 2\rho^2 + \rho^2) = \sigma_2^2 (1 - \rho^2),$$

as claimed.