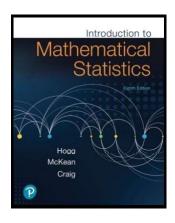
Mathematical Statistics 1

Chapter 2. Multivariate Distributions

2.6. Extension to Several Random Variables—Proofs of Theorems



Mathematical Statistics 1

November 23, 2019

1 / 8

Theorem 2.6.

Theorem 2.6.2

Theorem 2.6.2. Let **V** and **W** be $m \times n$ matrices of random variables, let **A** and **C** be $k \times m$ matrices of constants, and let **B** be an $n \times \ell$ matrix of constants. Then E[AV + CW] = AE[V] + CE[W] and E[AWB] = AE[E]B; that is, E is a linear operator on matrices of random variables.

Proof. Since E is a linear operator on random variable by Theorem 2.1.1, then the (i,j) component of E[AV + CW] is

$$E\left[\sum_{s=1}^{m} a_{is} V_{sj} + \sum_{s=1}^{m} c_{is} W_{sj}\right] = \sum_{s=1}^{m} a_{is} E[V_{sj}] + \sum_{s=1}^{m} c_{is} E[W_{sj}]$$

and the first claim holds.

Next, the (i,p) entry of **AW** (an $k \times m$ matrix) is $\sum_{s=1}^{m} a_{is} W_{sp}$ and the (i,j) entry of **AWB** (an $k \times \ell$ matrix) is $\sum_{p=1}^{n} (\sum_{s=1}^{m} a_{is} W_{sp}) b_{pj}$.

Theorem 2.6.1

Theorem 2.6.1

Theorem 2.6.1. Suppose X_1, X_2, \ldots, X_n are n mutually independent random variables. Suppose the Moment generating function for x_i is $M_i(t)$ for $-j_1 < t < h_i$ where $h_i > 0$, for $i = 1, 2, \ldots, n$. Let $T = \sum_{i=1}^n k_i X_i$ where k_1, k_2, \ldots, k_n are constants. Then T has the moment generating function given by

$$M_T(i) = \prod_{i=1}^n M_i(k_i t)$$
 for $-\min_{1 \le i \le n} \{h_i\} \le t \le \min_{1 \le i \le n} \{h_i\}$.

Proof. Assume t is in the interval $(-\min_{1 \le i \le n} \{h_i\}, \min_{1 \le i \le n} \{h_i\})$. Then

$$M_T(t) = E\left[\exp\left(\sum_{i=1}^n t k_i X_i\right)\right] = E\left[\prod_{i=1}^n e^{ik_i X_i}\right]$$

$$= \prod_{i=1}^n E\left[e^{tk_i X_i}\right] \text{ by the mutual independence}$$

$$= \prod_{i=1}^n M_i(k_i t).$$

Mathematical Statistics 1

November 23, 2019

Theorem 2.6

Theorem 2.6.2 (continued)

Proof (continued). Since E is a linear operator on random variables by Theorem 2.1.1, then the (i, j) entry of E[AWB] is

$$E\left[\sum_{p=1}^{n}\left(\sum_{s=1}^{m}a_{is}W_{sp}\right)b_{pj}\right] = \sum_{p=1}^{m}E\left[\sum_{s=1}^{m}a_{is}W_{sp}b_{pj}\right]$$
$$= \sum_{p=1}^{m}E\left[\sum_{s=1}^{m}a_{is}W_{sp}\right]b_{pj} = \sum_{p=1}^{m}\left(\sum_{s=1}^{m}a_{is}E[W_{sp}]\right)b_{pj},$$

and this is the (i,j) entry of AE[W]B, so the second claim holds.

Mathematical Statistics 1 November 23, 2019 4 / 8 () Mathematical Statistics 1 November 23, 2019 5 / 8

Theorem 2.6.3

Theorem 2.6.3. Let $\mathbf{X} = (X_1, X_2, \dots, X_n)' = (X_1, X_2, \dots, X_n)^T$ be an *n*-dimensional random vector, such that $\sigma_i^2 = \sigma_{ii} = \text{Var}(X_i) < \infty$. Let **A** be an $m \times n$ matrix of constants. Then $Cov(\mathbf{X}) = E[\mathbf{X}\mathbf{X}'] = \mu \mu'$ and Cov(AX) = ACov(X)A'.

Proof. First.

$$\begin{aligned} \mathsf{Cov}(\mathbf{X}) &= E[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})'] \text{ by definition} \\ &= E[\mathbf{X}\mathbf{X}' - \boldsymbol{\mu}\mathbf{X}' - \mathbf{X}\boldsymbol{\mu}' + \boldsymbol{\mu}\boldsymbol{\mu}'] \\ &= E[\mathbf{X}\mathbf{X}'] - \boldsymbol{\mu}E[\mathbf{X}'] = E[\mathbf{X}]\boldsymbol{\mu}' + E[\boldsymbol{\mu}\boldsymbol{\mu}'] \text{ by Theorem 2.6.2} \\ &= E[\mathbf{X}\mathbf{X}'] - \boldsymbol{\mu}\boldsymbol{\mu}' - \boldsymbol{\mu}\boldsymbol{\mu}' + \boldsymbol{\mu}\boldsymbol{\mu}' \\ &= E[\mathbf{X}\mathbf{X}'] - \boldsymbol{\mu}\boldsymbol{\mu}', \end{aligned}$$

Mathematical Statistics 1

as claimed.

November 23, 2019

Mathematical Statistics 1

November 23, 2019

Corollary 2.6.A

Corollary 2.6.A. All variance-covariance matrices are positive semi-definite.

Proof. Let **X** be a random (column) vector of *n* random variables and let **a** be a constant $n \times 1$ vector. Then $Y = \mathbf{a}' \mathbf{X}$ is a random variable (a linear combination of the components of **X**) and so has a nonnegative variance. That is,

$$0 \leq Var(Y) = Var(\mathbf{a}'\mathbf{X})$$

$$= E[(\mathbf{a}'\mathbf{X} - E[\mathbf{a}'\mathbf{X}])^2] \text{ by Definition 1.9.2}$$

$$= Cov(\mathbf{a}'\mathbf{X}) \text{ since } Cov(Y) = Var(Y) \text{ for a single random variable}$$

$$= \mathbf{a}'Cov(\mathbf{X})\mathbf{a} \text{ by Theorem 2.6.3.}$$

So Cov(X) is a positive semi-definite matrix, as claimed.

Theorem 2.6.3 (continued)

Theorem 2.6.3. Let $\mathbf{X} = (X_1, X_2, \dots, X_n)' = (X_1, X_2, \dots, X_n)^T$ be an *n*-dimensional random vector, such that $\sigma_i^2 = \sigma_{ii} = \text{Var}(X_i) < \infty$. Let **A** be an $m \times n$ matrix of constants. Then $Cov(\mathbf{X}) = E[\mathbf{X}\mathbf{X}'] = \mu \mu'$ and Cov(AX) = ACov(X)A'.

Proof (continued). Next, by Theorem 2.6.2, $E[AX] = AE[X] = A\mu$ and

Cov(AX) =
$$E[(AA - A\mu)(AX - A\mu)']$$
 by definition
= $E[(AA - A\mu)(X'A' - \mu'A']$
since $(AB)' = (AB)^T = B^TA^T = B'A'$
= $E[AXX'A' - A\mu X'A' - AX\mu'A' + A\mu\mu'A']$
= $Cov(X)A'$ by the first result.