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Theorem 2.6.2

Theorem 2.6.2. Let V and W be m x n matrices of random variables, let
A and C be k x m matrices of constants, and let B be an n x £ matrix of
constants. Then E[AV + CW] = AE[V] + CE[W] and

E[AWB] = AE[E]B; that is, E is a linear operator on matrices of random
variables.

Proof. Since E is a linear operator on random variable by Theorem 2.1.1,
then the (/, /) component of E[AV + CW] is

m m
E Z djs Vsj + Z Cis Wsj
s=1 s=1

and the first claim holds.

m m
= Z aisE[Vg] + Z cis E[Wj]
s=1 s=1

Next, the (i, p) entry of AW (an k x m matrix) is Y .- ; aisWsp and the
(i,j) entry of AWB (an k x £ matrix) is 0, (3201 aisWep) by;.

Mathematical Statistics 1 November 23, 2019 4/8

Theorem 2.6.1

Theorem 2.6.1. Suppose Xi, X5, ..., X, are n mutually independent
random variables. Suppose the Moment generating function for x; is M;(t)
for —j3 < t < h; where h; >0, fori=1,2,...,n. Let T = 27:1 ki X;
where ki, ko, ..., k, are constants. Then T has the moment generating
function given by

MT(i) = le]:l M,‘(k;t) for — minlg;gn{h;} <t< minlg;gn{h;}.

Proof. Assume t is in the interval (— mini<j<,{hi}, mini<j<,{hi}). Then
Mr(t) = E [exp (Z tk,-X,-) =E [H e"kfo]
i=1

i=1
n

= HE [etk"x'} by the mutual independence
i=1

= ﬁM;(k;t). [
i=1
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Theorem 2.6.2 (continued)

Proof (continued). Since E is a linear operator on random variables by
Theorem 2.1.1, then the (i, ) entry of E[AWB] is

Z (Z ais sp> i E [Z 3is Ws,,b,,]]

p=1
m m m
= Z E [Z ajs Wsp] bpj = Z (Z aISE[WSP]> pis
p=1 s=1 p=1
and this is the (i, /) entry of AE[W]B, so the second claim holds. O
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Theorem 2.6.3 Theorem 2.6.3

Theorem 2.6.3 Theorem 2.6.3 (continued)
Theorem 2.6.3. Let X = (X1, Xo,...,X,) = (X1, X2,...,X,)" be an Theorem 2.6.3. Let X = (Xq, Xo,...,X,) = (X1, X2,...,X,)" be an
n-dimensional random vector, such that 0,2 = oji = Var(X;) < co. Let A n-dimensional random vector, such that 0,2 = oji = Var(X;) < co. Let A
be an m x n matrix of constants. Then Cov(X) = E[XX'] = pp' and be an m x n matrix of constants. Then Cov(X) = E[XX'] = pp' and
Cov(AX) = ACov(X)A'. Cov(AX) = ACov(X)A'.
Proof. First, Proof (continued). Next, by Theorem 2.6.2, E[AX] = AE[X] = Ap and
Cov(X) = E[(X— p)(X — u)] by definition Cov(AX) = E[(AA — Au)(AX — Ap)'] by definition

= EXX' = pX' —Xp' + pp] = E[(AA - Ap)(X'A" — p'A]

= E[XX'] — pE[X] = E[X]pt’ + E[p'] by Theorem 2.6.2 since (AB) = (AB)" =B"AT = B'A’

= E[XX—pup' — pp' + pp’ = E[AXX'A" — AuX'A" — AXp/A + App/ A

= E[XX]— pp, = Cov(X)A’ by the first result.
as claimed. 0
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Corollary 2.6.A

Corollary 2.6.A. All variance-covariance matrices are positive
semi-definite.

Proof. Let X be a random (column) vector of n random variables and let
a be a constant n x 1 vector. Then Y = a’X is a random variable (a linear

combination of the components of X) and so has a nonnegative variance.
That is,

0 < Var(Y) = Var(a'X)

E[(a’X — E[a’X])?] by Definition 1.9.2

Cov(a’X) since Cov(Y) = Var(Y) for a single random variable
= a'Cov(X)a by Theorem 2.6.3.

So Cov(X) is a positive semi-definite matrix, as claimed. O
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