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Chapter 2. Multivariate Distributions
2.6. Extension to Several Random Variables—Proofs of Theorems
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Theorem 2.6.1

Theorem 2.6.1

Theorem 2.6.1. Suppose X1,X2, . . . ,Xn are n mutually independent
random variables. Suppose the Moment generating function for xi is Mi (t)
for −j1 < t < hi where hi > 0, for i = 1, 2, . . . , n. Let T =

∑n
i=1 kiXi

where k1, k2, . . . , kn are constants. Then T has the moment generating
function given by
MT (i) =

∏n
i=1 Mi (ki t) for −min1≤i≤n{hi} ≤ t ≤ min1≤i≤n{hi}.

Proof. Assume t is in the interval (−min1≤i≤n{hi},min1≤i≤n{hi}) . Then

MT (t) = E

[
exp

(
n∑

i=1

tkiXi

)]
= E

[
n∏

i=1

e ikiXi

]

=
n∏

i=1

E
[
etkiXi

]
by the mutual independence

=
n∏

i=1

Mi (ki t).
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Theorem 2.6.2

Theorem 2.6.2

Theorem 2.6.2. Let V and W be m× n matrices of random variables, let
A and C be k ×m matrices of constants, and let B be an n × ` matrix of
constants. Then E [AV + CW] = AE [V] + CE [W] and
E [AWB] = AE [E]B; that is, E is a linear operator on matrices of random
variables.

Proof. Since E is a linear operator on random variable by Theorem 2.1.1,
then the (i , j) component of E [AV + CW] is

E

[
m∑

s=1

aisVsj +
m∑

s=1

cisWsj

]
=

m∑
s=1

aisE [Vsj ] +
m∑

s=1

cisE [Wsj ]

and the first claim holds.

Next, the (i , p) entry of AW (an k ×m matrix) is
∑m

s=1 aisWsp and the
(i , j) entry of AWB (an k × ` matrix) is

∑n
p=1 (

∑m
s=1 aisWsp) bpj .
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Theorem 2.6.2

Theorem 2.6.2 (continued)

Proof (continued). Since E is a linear operator on random variables by
Theorem 2.1.1, then the (i , j) entry of E [AWB] is

E

 n∑
p=1

(
m∑

s=1

aisWsp

)
bpj

 =
m∑

p=1

E

[
m∑

s=1

aisWspbpj

]

=
m∑

p=1

E

[
m∑

s=1

aisWsp

]
bpj =

m∑
p=1

(
m∑

s=1

aisE [Wsp]

)
bpj ,

and this is the (i , j) entry of AE [W]B, so the second claim holds.
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Theorem 2.6.3

Theorem 2.6.3

Theorem 2.6.3. Let X = (X1,X2, . . . ,Xn)
′ = (X1,X2, . . . ,Xn)

T be an
n-dimensional random vector, such that σ2

i = σii = Var(Xi ) < ∞. Let A
be an m × n matrix of constants. Then Cov(X) = E [XX′] = µµ′ and
Cov(AX) = ACov(X)A′.

Proof. First,

Cov(X) = E [(X− µ)(X− µ)′] by definition

= E [XX′ − µX′ − Xµ′ + µµ′]

= E [XX′]− µE [X′] = E [X]µ′ + E [µµ′] by Theorem 2.6.2

= E [XX′]− µµ′ − µµ′ + µµ′

= E [XX′]− µµ′,

as claimed.
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Theorem 2.6.3

Theorem 2.6.3 (continued)

Theorem 2.6.3. Let X = (X1,X2, . . . ,Xn)
′ = (X1,X2, . . . ,Xn)

T be an
n-dimensional random vector, such that σ2

i = σii = Var(Xi ) < ∞. Let A
be an m × n matrix of constants. Then Cov(X) = E [XX′] = µµ′ and
Cov(AX) = ACov(X)A′.

Proof (continued). Next, by Theorem 2.6.2, E [AX] = AE [X] = Aµ and

Cov(AX) = E [(AA− Aµ)(AX− Aµ)′] by definition

= E [(AA− Aµ)(X′A′ − µ′A′]

since (AB)′ = (AB)T = BTAT = B′A′

= E [AXX′A′ − AµX′A′ − AXµ′A′ + Aµµ′A′]

= Cov(X)A′ by the first result.
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Corollary 2.6.A

Corollary 2.6.A

Corollary 2.6.A. All variance-covariance matrices are positive
semi-definite.

Proof. Let X be a random (column) vector of n random variables and let
a be a constant n× 1 vector. Then Y = a′X is a random variable (a linear
combination of the components of X) and so has a nonnegative variance.
That is,

0 ≤ Var(Y ) = Var(a′X)

= E [(a′X− E [a′X])2] by Definition 1.9.2

= Cov(a′X) since Cov(Y ) = Var(Y ) for a single random variable

= a′Cov(X)a by Theorem 2.6.3.

So Cov(X) is a positive semi-definite matrix, as claimed.
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