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Chapter 2. Multivariate Distributions
2.6. Extension to Several Random Variables—Proofs of Theorems
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Theorem 2.6.1

Theorem 2.6.1. Suppose X1, Xy, ..., X, are n mutually independent
random variables. Suppose the Moment generating function for x; is M;(t)
for —j1 <t < hj where h; >0, for i =1,2,...,n. Let T =", kiX;
where ki, ko, ..., k, are constants. Then T has the moment generating
function given by

MT(i) = H?:l M,'(k,'t) for — minlg,-g,,{h,-} <t< minlg,-g,,{h;}.
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Theorem 2.6.1

Theorem 2.6.1. Suppose X1, Xy, ..., X, are n mutually independent
random variables. Suppose the Moment generating function for x; is M;(t)
for —j1 <t < hj where h; >0, for i =1,2,...,n. Let T =", kiX;
where ki, ko, ..., k, are constants. Then T has the moment generating
function given by

MT(i) = H?:l M,'(k,'t) for — minlg,-g,,{h,-} <t< minlg,-g,,{h;}.

Proof. Assume t is in the interval (— mini<j<,{hi}, mini<j<,{h;}). Then
n n
MT(I') = E [exp <Z tk,'X,'> Heik,-X,-]
i=1

i=1
n
= HE [etk"x'} by the mutual independence
i=1

= ﬁ/\/],‘(k,‘l’). L]
i=1
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Theorem 2.6.2

Theorem 2.6.2. Let V and W be m x n matrices of random variables, let
A and C be k x m matrices of constants, and let B be an n x £ matrix of
constants. Then E[AV + CW] = AE[V] + CE[W] and

E[AWB| = AE[E]B; that is, E is a linear operator on matrices of random
variables.
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Theorem 2.6.2

Theorem 2.6.2. Let V and W be m x n matrices of random variables, let
A and C be k x m matrices of constants, and let B be an n x £ matrix of
constants. Then E[AV + CW] = AE[V] + CE[W] and

E[AWB| = AE[E]B; that is, E is a linear operator on matrices of random
variables.

Proof. Since E is a linear operator on random variable by Theorem 2.1.1,
then the (i, /) component of E[AV + CW] is

m m m m
E Zaisvsj +ZcisWsj = ZaisE[Vsj] +ZCISE[Wsj]
s=1 s=1 s=1 s=1

and the first claim holds.
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Theorem 2.6.2

Theorem 2.6.2. Let V and W be m x n matrices of random variables, let
A and C be k x m matrices of constants, and let B be an n x £ matrix of
constants. Then E[AV + CW] = AE[V] + CE[W] and

E[AWB| = AE[E]B; that is, E is a linear operator on matrices of random
variables.

Proof. Since E is a linear operator on random variable by Theorem 2.1.1,
then the (i, /) component of E[AV + CW] is

m m m m
E Zaisvsj +ZcisWsj = ZaisE[Vsj] +ZCISE[Wsj]
s=1 s=1 s=1 s=1

and the first claim holds.

Next, the (7, p) entry of AW (an k x m matrix) is y . ; ajsWsp and the

(7,j) entry of AWB (an k x £ matrix) is >0 (D°01; aisWsp) by;.
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Theorem 2.6.2 (continued)

Proof (continued). Since E is a linear operator on random variables by
Theorem 2.1.1, then the (i, ) entry of E[AWB] is

Z(Za,s sp) Pi Zml

Z ais Wep bpj]

p=1 p=1 s=1
m m m m
=>E [Z aisWep | bpj = > (Z a,-SE[Wsp]> bpj,
p=1 s=1 p=1 \s=1
and this is the (/,/) entry of AE[W]B, so the second claim holds. O
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Theorem 2.6.3

Theorem 2.6.3

Theorem 2.6.3. Let X = (X1, Xo,...,X,) = (X1, X2,...,X,)" be an
n-dimensional random vector, such that 0% = o;; = Var(X;) < co. Let A

be an m x n matrix of constants. Then Cov(X) = E[XX'] = pp' and
Cov(AX) = ACov(X)A'.
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Theorem 2.6.3

Theorem 2.6.3. Let X = (X1, Xo,...,X,) = (X1, X2,...,X,)" be an
n-dimensional random vector, such that 0% = o;; = Var(X;) < co. Let A
be an m x n matrix of constants. Then Cov(X) = E[XX'] = pp' and
Cov(AX) = ACov(X)A'.

Proof. First,

Cov(X) = E[(X — p)(X — )] by definition

E[XX" — pX' = Xpt' + ppt]

E[XX'] — pE[X'] = E[X]p’ + E[pp/] by Theorem 2.6.2
EXX'] — pp’ — pp’ + ppt/

= E[XXT] - pp,

as claimed.
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Theorem 2.6.3

Theorem 2.6.3 (continued)

Theorem 2.6.3. Let X = (X1, Xo,...,X,) = (X1, X2,...,X,)" be an
n-dimensional random vector, such that 0% = o;; = Var(X;) < co. Let A

be an m x n matrix of constants. Then Cov(X) = E[XX'] = pp' and
Cov(AX) = ACov(X)A'.

Proof (continued). Next, by Theorem 2.6.2, E[AX] = AE[X] = Au and
Cov(AX) = E[(AA — Apu)(AX — Apu)’] by definition
= E[(AA - Ap)(X'A — p'A]
since (AB) = (AB)" =B"AT = B'A/
= E[AXX'A" — AuX'A" — AXp/'A" + App/A]
= Cov(X)A’ by the first result.

O
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Corollary 2.6.A

Corollary 2.6.A. All variance-covariance matrices are positive
semi-definite.
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Corollary 2.6.A

Corollary 2.6.A. All variance-covariance matrices are positive
semi-definite.

Proof. Let X be a random (column) vector of n random variables and let
a be a constant n x 1 vector. Then Y = a’X is a random variable (a linear
combination of the components of X) and so has a nonnegative variance.

That is,

0 < Var(Y) = Var(a'X)

E[(a’X — E[a’X])?] by Definition 1.9.2

Cov(a’X) since Cov(Y) = Var(Y) for a single random variable
= a’Cov(X)a by Theorem 2.6.3.

So Cov(X) is a positive semi-definite matrix, as claimed. O
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