Mathematical Statistics 1

Chapter 2. Multivariate Distributions

2.6. Extension to Several Random Variables-Proofs of Theorems

Table of contents

(1) Theorem 2.6.1
(2) Theorem 2.6.2
(3) Theorem 2.6.3
(4) Corollary 2.6.A

Theorem 2.6.1

Theorem 2.6.1. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are n mutually independent random variables. Suppose the Moment generating function for x_{i} is $M_{i}(t)$ for $-j_{1}<t<h_{i}$ where $h_{i}>0$, for $i=1,2, \ldots, n$. Let $T=\sum_{i=1}^{n} k_{i} X_{i}$ where $k_{1}, k_{2}, \ldots, k_{n}$ are constants. Then T has the moment generating function given by
$M_{T}(i)=\prod_{i=1}^{n} M_{i}\left(k_{i} t\right)$ for $-\min _{1 \leq i \leq n}\left\{h_{i}\right\} \leq t \leq \min _{1 \leq i \leq n}\left\{h_{i}\right\}$.
Proof. Assume t is in the interval $\left(-\min _{1 \leq i \leq n}\left\{h_{i}\right\}, \min _{1 \leq i \leq n}\left\{h_{i}\right\}\right)$. Then
$M_{T}(t)=E\left[\exp \left(\sum_{i=1}^{n} t k_{i} X_{i}\right)\right]=E\left[\prod_{i=1}^{n} e^{i k_{i} X_{i}}\right]$

$$
=\prod_{i=1}^{n} M_{i}\left(k_{i} t\right)
$$

Theorem 2.6.1

Theorem 2.6.1. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are n mutually independent random variables. Suppose the Moment generating function for x_{i} is $M_{i}(t)$ for $-j_{1}<t<h_{i}$ where $h_{i}>0$, for $i=1,2, \ldots, n$. Let $T=\sum_{i=1}^{n} k_{i} X_{i}$ where $k_{1}, k_{2}, \ldots, k_{n}$ are constants. Then T has the moment generating function given by
$M_{T}(i)=\prod_{i=1}^{n} M_{i}\left(k_{i} t\right)$ for $-\min _{1 \leq i \leq n}\left\{h_{i}\right\} \leq t \leq \min _{1 \leq i \leq n}\left\{h_{i}\right\}$.
Proof. Assume t is in the interval $\left(-\min _{1 \leq i \leq n}\left\{h_{i}\right\}, \min _{1 \leq i \leq n}\left\{h_{i}\right\}\right)$. Then

$$
\begin{align*}
M_{T}(t) & =E\left[\exp \left(\sum_{i=1}^{n} t k_{i} X_{i}\right)\right]=E\left[\prod_{i=1}^{n} e^{i k_{i} x_{i}}\right] \\
& =\prod_{i=1}^{n} E\left[e^{t k_{i} X_{i}}\right] \text { by the mutual independence } \\
& =\prod_{i=1}^{n} M_{i}\left(k_{i} t\right) .
\end{align*}
$$

Theorem 2.6.2

Theorem 2.6.2. Let \mathbf{V} and \mathbf{W} be $m \times n$ matrices of random variables, let \mathbf{A} and \mathbf{C} be $k \times m$ matrices of constants, and let \mathbf{B} be an $n \times \ell$ matrix of constants. Then $E[\mathbf{A V}+\mathbf{C W}]=\mathbf{A} E[\mathbf{V}]+\mathbf{C} E[\mathbf{W}]$ and $E[\mathbf{A W B}]=\mathbf{A} E[\mathbf{E}] \mathbf{B}$; that is, E is a linear operator on matrices of random variables.

Proof. Since E is a linear operator on random variable by Theorem 2.1.1, then the (i, j) component of $E[\mathbf{A V}+\mathbf{C W}]$ is

$$
E\left[\sum_{s=1}^{m} a_{i s} V_{s j}+\sum_{s=1}^{m} c_{i s} W_{s j}\right]=\sum_{s=1}^{m} a_{i s} E\left[V_{s j}\right]+\sum_{s=1}^{m} c_{i s} E\left[W_{s j}\right]
$$

and the first claim holds.

Theorem 2.6.2

Theorem 2.6.2. Let \mathbf{V} and \mathbf{W} be $m \times n$ matrices of random variables, let \mathbf{A} and \mathbf{C} be $k \times m$ matrices of constants, and let \mathbf{B} be an $n \times \ell$ matrix of constants. Then $E[\mathbf{A V}+\mathbf{C W}]=\mathbf{A} E[\mathbf{V}]+\mathbf{C} E[\mathbf{W}]$ and $E[\mathbf{A W B}]=\mathbf{A} E[\mathbf{E}] \mathbf{B}$; that is, E is a linear operator on matrices of random variables.

Proof. Since E is a linear operator on random variable by Theorem 2.1.1, then the (i, j) component of $E[\mathbf{A V}+\mathbf{C W}]$ is

$$
E\left[\sum_{s=1}^{m} a_{i s} V_{s j}+\sum_{s=1}^{m} c_{i s} W_{s j}\right]=\sum_{s=1}^{m} a_{i s} E\left[V_{s j}\right]+\sum_{s=1}^{m} c_{i s} E\left[W_{s j}\right]
$$

and the first claim holds.
Next, the (i, p) entry of AW (an $k \times m$ matrix) is $\sum_{s=1}^{m} a_{i s} W_{s p}$ and the (i, j) entry of AWB (an $k \times \ell$ matrix) is $\sum_{p=1}^{n}\left(\sum_{s=1}^{m} a_{i s} W_{s p}\right) b_{p j}$

Theorem 2.6.2

Theorem 2.6.2. Let \mathbf{V} and \mathbf{W} be $m \times n$ matrices of random variables, let \mathbf{A} and \mathbf{C} be $k \times m$ matrices of constants, and let \mathbf{B} be an $n \times \ell$ matrix of constants. Then $E[\mathbf{A V}+\mathbf{C W}]=\mathbf{A} E[\mathbf{V}]+\mathbf{C} E[\mathbf{W}]$ and $E[\mathbf{A W B}]=\mathbf{A} E[\mathbf{E}] \mathbf{B}$; that is, E is a linear operator on matrices of random variables.

Proof. Since E is a linear operator on random variable by Theorem 2.1.1, then the (i, j) component of $E[\mathbf{A V}+\mathbf{C W}]$ is

$$
E\left[\sum_{s=1}^{m} a_{i s} V_{s j}+\sum_{s=1}^{m} c_{i s} W_{s j}\right]=\sum_{s=1}^{m} a_{i s} E\left[V_{s j}\right]+\sum_{s=1}^{m} c_{i s} E\left[W_{s j}\right]
$$

and the first claim holds.
Next, the (i, p) entry of AW (an $k \times m$ matrix) is $\sum_{s=1}^{m} a_{i s} W_{s p}$ and the (i, j) entry of AWB (an $k \times \ell$ matrix) is $\sum_{p=1}^{n}\left(\sum_{s=1}^{m} a_{i s} W_{s p}\right) b_{p j}$.

Theorem 2.6.2 (continued)

Proof (continued). Since E is a linear operator on random variables by Theorem 2.1.1, then the (i, j) entry of $E[A W B]$ is

$$
\begin{aligned}
& E\left[\sum_{p=1}^{n}\left(\sum_{s=1}^{m} a_{i s} W_{s p}\right) b_{p j}\right]=\sum_{p=1}^{m} E\left[\sum_{s=1}^{m} a_{i s} W_{s p} b_{p j}\right] \\
& =\sum_{p=1}^{m} E\left[\sum_{s=1}^{m} a_{i s} W_{s p}\right] b_{p j}=\sum_{p=1}^{m}\left(\sum_{s=1}^{m} a_{i s} E\left[W_{s p}\right]\right) b_{p j},
\end{aligned}
$$

and this is the (i, j) entry of $\mathbf{A} E[\mathbf{W}] \mathbf{B}$, so the second claim holds.

Theorem 2.6.3

Theorem 2.6.3. Let $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{\prime}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T}$ be an n-dimensional random vector, such that $\sigma_{i}^{2}=\sigma_{i i}=\operatorname{Var}\left(X_{i}\right)<\infty$. Let \mathbf{A} be an $m \times n$ matrix of constants. Then $\operatorname{Cov}(\mathbf{X})=E\left[\mathbf{X X}^{\prime}\right]=\boldsymbol{\mu} \boldsymbol{\mu}^{\prime}$ and $\operatorname{Cov}(\mathbf{A X})=\mathbf{A} \operatorname{Cov}(\mathbf{X}) \mathbf{A}^{\prime}$.

Proof. First,

```
\(\operatorname{Cov}(\mathbf{X})=E\left[(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{\prime}\right]\) by definition
    \(=E\left[\mathbf{X} \mathbf{X}^{\prime}-\boldsymbol{\mu} \mathbf{X}^{\prime}-\mathbf{X} \boldsymbol{\mu}^{\prime}+\boldsymbol{\mu} \boldsymbol{\mu}^{\prime}\right]\)
    \(=E\left[\mathbf{X X}^{\prime}\right]-\mu E\left[\mathbf{X}^{\prime}\right]=E[\mathbf{X}] \mu^{\prime}+E\left[\mu \mu^{\prime}\right]\) by Theorem 2.6.2
    \(=E\left[\mathbf{X X}^{\prime}\right]-\boldsymbol{\mu} \mu^{\prime}-\boldsymbol{\mu} \mu^{\prime}+\boldsymbol{\mu} \boldsymbol{\mu}^{\prime}\)
    \(=E\left[\mathbf{X X}^{\prime}\right]-\mu \mu^{\prime}\),
```


Theorem 2.6.3

Theorem 2.6.3. Let $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{\prime}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T}$ be an n-dimensional random vector, such that $\sigma_{i}^{2}=\sigma_{i i}=\operatorname{Var}\left(X_{i}\right)<\infty$. Let \mathbf{A} be an $m \times n$ matrix of constants. Then $\operatorname{Cov}(\mathbf{X})=E\left[\mathbf{X X}^{\prime}\right]=\boldsymbol{\mu} \boldsymbol{\mu}^{\prime}$ and $\operatorname{Cov}(\mathbf{A X})=\mathbf{A} \operatorname{Cov}(\mathbf{X}) \mathbf{A}^{\prime}$.

Proof. First,

$$
\begin{aligned}
\operatorname{Cov}(\mathbf{X}) & =E\left[(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{\prime}\right] \text { by definition } \\
& =E\left[\mathbf{X} \mathbf{X}^{\prime}-\boldsymbol{\mu} \mathbf{X}^{\prime}-\mathbf{X} \boldsymbol{\mu}^{\prime}+\boldsymbol{\mu} \boldsymbol{\mu}^{\prime}\right] \\
& =E\left[\mathbf{X} \mathbf{X}^{\prime}\right]-\boldsymbol{\mu} E\left[\mathbf{X}^{\prime}\right]=E[\mathbf{X}] \boldsymbol{\mu}^{\prime}+E\left[\boldsymbol{\mu} \boldsymbol{\mu}^{\prime}\right] \text { by Theorem 2.6.2 } \\
& =E\left[\mathbf{X X}^{\prime}\right]-\boldsymbol{\mu} \boldsymbol{\mu}^{\prime}-\boldsymbol{\mu} \boldsymbol{\mu}^{\prime}+\boldsymbol{\mu} \boldsymbol{\mu}^{\prime} \\
& =E\left[\mathbf{X X} \mathbf{X}^{\prime}\right]-\boldsymbol{\mu} \boldsymbol{\mu}^{\prime},
\end{aligned}
$$

as claimed.

Theorem 2.6.3 (continued)

Theorem 2.6.3. Let $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{\prime}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T}$ be an n-dimensional random vector, such that $\sigma_{i}^{2}=\sigma_{i i}=\operatorname{Var}\left(X_{i}\right)<\infty$. Let \mathbf{A} be an $m \times n$ matrix of constants. Then $\operatorname{Cov}(\mathbf{X})=E\left[\mathbf{X X}^{\prime}\right]=\boldsymbol{\mu} \boldsymbol{\mu}^{\prime}$ and $\operatorname{Cov}(\mathbf{A X})=\mathbf{A} \operatorname{Cov}(\mathbf{X}) \mathbf{A}^{\prime}$.

Proof (continued). Next, by Theorem 2.6.2, $E[\mathbf{A X}]=\mathbf{A} E[\mathbf{X}]=\mathbf{A} \boldsymbol{\mu}$ and

$$
\begin{aligned}
\operatorname{Cov}(\mathbf{A X})= & E\left[(\mathbf{A} \mathbf{A}-\mathbf{A} \boldsymbol{\mu})(\mathbf{A X}-\mathbf{A} \boldsymbol{\mu})^{\prime}\right] \text { by definition } \\
= & E\left[(\mathbf{A} \mathbf{A}-\mathbf{A} \boldsymbol{\mu})\left(\mathbf{X}^{\prime} \mathbf{A}^{\prime}-\boldsymbol{\mu}^{\prime} \mathbf{A}^{\prime}\right]\right. \\
& \operatorname{since}(\mathbf{A B})^{\prime}=(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}=\mathbf{B}^{\prime} \mathbf{A}^{\prime} \\
= & E\left[\mathbf{A} \mathbf{X} \mathbf{X}^{\prime} \mathbf{A}^{\prime}-\mathbf{A} \boldsymbol{\mu} \mathbf{X}^{\prime} \mathbf{A}^{\prime}-\mathbf{A} \mathbf{X} \boldsymbol{\mu}^{\prime} \mathbf{A}^{\prime}+\mathbf{A} \boldsymbol{\mu} \boldsymbol{\mu}^{\prime} \mathbf{A}^{\prime}\right] \\
= & \operatorname{Cov}(\mathbf{X}) \mathbf{A}^{\prime} \text { by the first result. }
\end{aligned}
$$

Corollary 2.6.A

Corollary 2.6.A. All variance-covariance matrices are positive semi-definite.

Proof. Let \mathbf{X} be a random (column) vector of n random variables and let a be a constant $n \times 1$ vector. Then $Y=\mathbf{a}^{\prime} \mathbf{X}$ is a random variable (a linear combination of the components of \mathbf{X}) and so has a nonnegative variance. That is,

```
\(0 \leq \operatorname{Var}(Y)=\operatorname{Var}\left(\mathbf{a}^{\prime} \mathbf{X}\right)\)
    \(=E\left[\left(\mathbf{a}^{\prime} \mathbf{X}-E\left[\mathbf{a}^{\prime} \mathbf{X}\right]\right)^{2}\right]\) by Definition 1.9.2
    \(=\operatorname{Cov}\left(\mathbf{a}^{\prime} \mathbf{X}\right)\) since \(\operatorname{Cov}(Y)=\operatorname{Var}(Y)\) for a single random variable
\(=\mathbf{a}^{\prime} \operatorname{Cov}(\mathbf{X}) \mathbf{a}\) by Theorem 2.6.3.
```

So $\operatorname{Cov}(X)$ is a positive semi-definite matrix, as claimed.

Corollary 2.6.A

Corollary 2.6.A. All variance-covariance matrices are positive semi-definite.

Proof. Let \mathbf{X} be a random (column) vector of n random variables and let a be a constant $n \times 1$ vector. Then $Y=\mathbf{a}^{\prime} \mathbf{X}$ is a random variable (a linear combination of the components of \mathbf{X}) and so has a nonnegative variance. That is,

$$
\begin{aligned}
0 & \leq \operatorname{Var}(Y)=\operatorname{Var}\left(\mathbf{a}^{\prime} \mathbf{X}\right) \\
& =E\left[\left(\mathbf{a}^{\prime} \mathbf{X}-E\left[\mathbf{a}^{\prime} \mathbf{X}\right]\right)^{2}\right] \text { by Definition 1.9.2 } \\
& =\operatorname{Cov}\left(\mathbf{a}^{\prime} \mathbf{X}\right) \text { since } \operatorname{Cov}(Y)=\operatorname{Var}(Y) \text { for a single random variable } \\
& =\mathbf{a}^{\prime} \operatorname{Cov}(\mathbf{X}) \mathbf{a} \text { by Theorem 2.6.3. }
\end{aligned}
$$

So $\operatorname{Cov}(\mathbf{X})$ is a positive semi-definite matrix, as claimed.

