Mathematical Statistics 1

Chapter 2. Multivariate Distributions

2.8. Linear Combinations of Random Variables—Proofs of Theorems

Table of contents

- 1 Theorem 2.8.1
- 2 Theorem 2.8.2
- 3 Corollary 2.8.1
- 4 Corollary 2.8.2
- Theorem 2.8.A

Theorem 2.8.1. Let X_1, X_2, \ldots, X_n be random variables and define $T = \sum_{i=1}^n a_i X_i$. Suppose $E[X_i] = \mu_i$ for $i = 1, 2, \ldots, n$. Then $E[T] = \sum_{i=1}^n a_i \mu_i$.

Proof. By Theorem 2.1.1 (and induction) E is linear so

$$E[T] = E\left[\sum_{i=1}^{n} a_i X_i\right] = \sum_{i=1}^{n} E[a_i X_i] = \sum_{i=1}^{n} a_i E[X_i] = \sum_{i=1}^{n} a_i \mu_i,$$

as claimed.

Theorem 2.8.1. Let X_1, X_2, \ldots, X_n be random variables and define $T = \sum_{i=1}^n a_i X_i$. Suppose $E[X_i] = \mu_i$ for $i = 1, 2, \ldots, n$. Then $E[T] = \sum_{i=1}^n a_i \mu_i$.

Proof. By Theorem 2.1.1 (and induction) E is linear so

$$E[T] = E\left[\sum_{i=1}^{n} a_i X_i\right] = \sum_{i=1}^{n} E[a_i X_i] = \sum_{i=1}^{n} a_i E[X_i] = \sum_{i=1}^{n} a_i \mu_i,$$

Theorem 2.8.2. Let $X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_m$ be random variables and define $T = \sum_{i=1}^n a_i X_i$ and $W = \sum_{j=1}^m b_j Y_j$. If $E[X_i^2] < \infty$ and $E[Y_j^2] < \infty$ for $i = 1, 2, \ldots, n$ and $j = 1, 2, \ldots, m$, then

$$Cov(T, W) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j Cov(X_i, Y_j).$$

Proof. We have by the definition of covariance (Definition 2.5.1) that

$$\operatorname{Cov}(T,W) = E[(T - \mu_T)(W - \mu_W)] \text{ where } E[T] = \mu_T \text{ is the}$$

$$\operatorname{mean of } T \text{ and } E[W] = \mu_W \text{ is the mean of } W$$

$$= E\left[\left(\sum_{i=1}^n a_i X_i = \sum_{i=1}^n a_i E[X_i]\right) \left(\sum_{i=1}^m b_i Y_j - \sum_{i=1}^m b_i E[Y_i]\right)\right]$$

$$= E \left[\left(\sum_{i=1}^{n} (a_i X_i - a_i E[X_i]) \right) \left(\sum_{j=1}^{m} (b_j Y_j - b_j E[Y_j]) \right) \right]$$

Theorem 2.8.2. Let $X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_m$ be random variables and define $T = \sum_{i=1}^n a_i X_i$ and $W = \sum_{j=1}^m b_j Y_j$. If $E[X_i^2] < \infty$ and $E[Y_i^2] < \infty$ for $i = 1, 2, \ldots, n$ and $j = 1, 2, \ldots, m$, then

$$Cov(T, W) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j Cov(X_i, Y_j).$$

Proof. We have by the definition of covariance (Definition 2.5.1) that

$$Cov(T, W) = E[(T - \mu_T)(W - \mu_W)] \text{ where } E[T] = \mu_T \text{ is the }$$

$$\text{mean of } T \text{ and } E[W] = \mu_W \text{ is the mean of } W$$

$$= E\left[\left(\sum_{i=1}^n a_i X_i = \sum_{i=1}^n a_i E[X_i]\right) \left(\sum_{j=1}^m b_j Y_j - \sum_{j=1}^m b_j E[Y_j]\right)\right]$$

$$= E\left[\left(\sum_{i=1}^n (a_i X_i - a_i E[X_i])\right) \left(\sum_{i=1}^m (b_j Y_j - b_j E[Y_j])\right)\right]$$

Theorem 2.8.2 (continued 1)

Proof (continued).

$$Cov(T, W) = E\left[\sum_{i=1}^{n} \sum_{j=1}^{m} (a_{i}X_{i} - a_{i}E[X_{i}])(b_{j}Y_{j} - b_{j}E[Y_{j}])\right]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} E[(a_{i}X_{i} - a_{i}E[X_{i}])(b_{j}Y_{j} - b_{j}E[Y_{j}])]$$
since E is linear by Theorem 2.1.1
$$= \sum_{i=1}^{n} \sum_{j=1}^{m} E[a_{i}b_{j}X_{i}Y_{j} - a_{i}b_{j}E[X_{i}]Y_{j} - a_{i}b_{j}E[X_{i}]Y_{j} + a_{i}b_{j}E[X_{i}]E[Y_{j}])$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} (a_{i}b_{j}E[X_{i}Y_{j}] - a_{i}b_{j}E[X_{i}]E[Y_{j}] - a_{i}b_{j}E[X_{i}]E[Y_{j}]) \text{ by Theorem 2.1.1}$$

Theorem 2.8.2 (continued 2)

Proof (continued). ...

$$Cov(T, W) = \sum_{i=1}^{m} \sum_{j=1}^{m} a_i b_j (E[X_i Y_j] - 2E[X_i] E[Y_j] + E[X_i] E[Y_j])$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j E[(X_i - E[X_i])(Y_j - E[Y_j])] \text{ by Theorem 2.1.1}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j Cov(X_i, Y_j) \text{ by Definition 2.5.1,}$$

Corollary 2.8.1. Let X_1, X_2, \dots, X_n be random variables and define $T = \sum_{i=1}^{n} a_i X_i$. Provided $E[X_i^2] < \infty$ for i = 1, 2, ..., n, then

$$Var(T) = \sum_{i=1}^{n} a_i^2 Var(X_i) + s \sum_{i < j} a_i a_j Cov(X_i, X_j).$$

Proof. By the definition of variance (Definition 1.9.2) we have

$$Var(T) = E[(T - E[T])^{2}) = E[(T - E[T])(T - E[T])]$$

$$= Cov(T, T) \text{ by Definition 2.5.1}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} a_{j} Cov(X_{i}, X_{i}) + \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{m} a_{i} a_{j} Cov(X_{i}, X_{j})$$

$$= \sum_{i=1}^{n} a_{i}^{2} Var(X_{i}) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{m} a_{i} a_{j} Cov(X_{i}, X_{j})$$
since $Var(X_{i}) = Cov(X_{i}, X_{i})$ and $Cov(X_{i}, X_{i}) > Cov(X_{i}, X_{i})$

Corollary 2.8.1. Let X_1, X_2, \dots, X_n be random variables and define $T = \sum_{i=1}^n a_i X_i$. Provided $E[X_i^2] < \infty$ for i = 1, 2, ..., n, then

$$Var(T) = \sum_{i=1}^{n} a_i^2 Var(X_i) + s \sum_{i < j} a_i a_j Cov(X_i, X_j).$$

Proof. By the definition of variance (Definition 1.9.2) we have

$$Var(T) = E[(T - E[T])^{2}) = E[(T - E[T])(T - E[T])]$$

$$= Cov(T, T) \text{ by Definition 2.5.1}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i}a_{j} Cov(X_{i}, X_{i}) + \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{m} a_{i}a_{j} Cov(X_{i}, X_{j})$$

$$= \sum_{i=1}^{n} a_{i}^{2} Var(X_{i}) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{m} a_{i}a_{j} Cov(X_{i}, X_{j})$$
since $Var(X_{i}) = Cov(X_{i}, X_{i})$ and $Cov(X_{i}, X_{i}) > Cov(X_{i}, X_{i})$

Corollary 2.8.1 (continued)

Corollary 2.8.1. Let X_1, X_2, \ldots, X_n be random variables and define $T = \sum_{i=1}^n a_i X_i$. Provided $E[X_i^2] < \infty$ for $i = 1, 2, \ldots, n$, then

$$Var(T) = \sum_{i=1}^{n} a_i^2 Var(X_i) + s \sum_{i < j} a_i a_j Cov(X_i, X_j).$$

Proof (continued). ...

$$Var(T) = \sum_{i=1}^{n} a_i^2 Var(X_i) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{m} a_i a_j Cov(X_i, X_j)$$
$$= \sum_{i=1}^{n} a_i^2 Var(X_i) + 2 \sum_{i \leq i} a_i a_j Cov(X_i, X_j),$$

Corollary 2.8.2. Let X_1, X_2, \dots, X_n be independent random variables and define $T = \sum_{i=1}^{n} a_i X_i$. With $Var(X_i) = \sigma_i^2$ for i = 1, 2, ..., n we have $Var(T) = \sum_{i=1}^{n} a_i^2 \sigma_i^2$.

Proof. Since X_i and X_j are independent for $i \neq j$ then by Theorem 2.5.2 $Cov(X_i, X_i) = 0$ for $i \neq j$. So by Corollary 2.8.1,

$$Var(T) = Cor(T, T) = \sum_{i=1}^{n} a_i^2 Var(X_i) + 2 \sum_{i < j} a_i a_j Cov(X_i, X_j)$$

$$= \sum_{i=1}^{n} a_{i} \sigma_{i}^{2} + 0 = \sum_{i=1}^{n} a_{i} \sigma_{i}^{2},$$

Corollary 2.8.2. Let X_1, X_2, \ldots, X_n be independent random variables and define $T = \sum_{i=1}^n a_i X_i$. With $Var(X_i) = \sigma_i^2$ for $i = 1, 2, \ldots, n$ we have $Var(T) = \sum_{i=1}^n a_i^2 \sigma_i^2$.

Proof. Since X_i and X_j are independent for $i \neq j$ then by Theorem 2.5.2 $Cov(X_i, X_j) = 0$ for $i \neq j$. So by Corollary 2.8.1,

$$Var(T) = Cor(T, T) = \sum_{i=1}^{n} a_i^2 Var(X_i) + 2 \sum_{i < j} a_i a_j Cov(X_i, X_j)$$

$$= \sum_{i=1}^{n} a_{i} \sigma_{i}^{2} + 0 = \sum_{i=1}^{n} a_{i} \sigma_{i}^{2},$$

as claimed.

Theorem 2.8.A. Let X_1, X_2, \ldots, X_n be independent and identically distributed random variables with common mean μ and variance σ^2 . We have

$$E[\overline{X}] = \mu$$
, $Var(\overline{X}) = \frac{\sigma^2}{n}$, $S^2 = \frac{\sum_{i=1}^n X_i^2 - n\overline{X}^2}{n-1}$, and $E[S^2] = \sigma^2$.

Proof. We have
$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} = \sum_{i=1}^{n} \frac{X_i}{n}$$
 by definition, so by Theorem 2.8.1
$$E[\overline{X}] = \sum_{i=1}^{n} \frac{1}{n} E[X_i] = \sum_{i=1}^{n} \frac{\mu}{n} = \mu.$$

Theorem 2.8.A. Let X_1, X_2, \ldots, X_n be independent and identically distributed random variables with common mean μ and variance σ^2 . We have

$$E[\overline{X}] = \mu$$
, $Var(\overline{X}) = \frac{\sigma^2}{n}$, $S^2 = \frac{\sum_{i=1}^n X_i^2 - n\overline{X}^2}{n-1}$, and $E[S^2] = \sigma^2$.

Proof. We have $\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} = \sum_{i=1}^{n} \frac{X_i}{n}$ by definition, so by Theorem

2.8.1

$$E[\overline{X}] = \sum_{i=1}^{n} \frac{1}{n} E[X_i] = \sum_{i=1}^{n} \frac{\mu}{n} = \mu.$$

By Corollary 2.8.2,
$$Var(\overline{X}) = \sum_{i=1}^{n} \frac{1}{n^2} \sigma^2 = \frac{\sigma^2}{n}$$
.

Theorem 2.8.A. Let X_1, X_2, \ldots, X_n be independent and identically distributed random variables with common mean μ and variance σ^2 . We have

$$E[\overline{X}] = \mu$$
, $Var(\overline{X}) = \frac{\sigma^2}{n}$, $S^2 = \frac{\sum_{i=1}^n X_i^2 - n\overline{X}^2}{n-1}$, and $E[S^2] = \sigma^2$.

Proof. We have $\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} = \sum_{i=1}^{n} \frac{X_i}{n}$ by definition, so by Theorem

2.8.1

$$E[\overline{X}] = \sum_{i=1}^{n} \frac{1}{n} E[X_i] = \sum_{i=1}^{n} \frac{\mu}{n} = \mu.$$

By Corollary 2.8.2, $Var(\overline{X}) = \sum_{i=1}^{n} \frac{1}{n^2} \sigma^2 = \frac{\sigma^2}{n}$. The proof that

$$S^2 = \frac{\sum_{i=1}^{n} X_i^2 - n\overline{X}^2}{n-1}$$
 is to be given in Exercise 2.8.1.

Theorem 2.8.A. Let X_1, X_2, \ldots, X_n be independent and identically distributed random variables with common mean μ and variance σ^2 . We have

$$E[\overline{X}] = \mu$$
, $Var(\overline{X}) = \frac{\sigma^2}{n}$, $S^2 = \frac{\sum_{i=1}^n X_i^2 - n\overline{X}^2}{n-1}$, and $E[S^2] = \sigma^2$.

Proof. We have $\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} = \sum_{i=1}^{n} \frac{X_i}{n}$ by definition, so by Theorem

2.8.1

$$E[\overline{X}] = \sum_{i=1}^{n} \frac{1}{n} E[X_i] = \sum_{i=1}^{n} \frac{\mu}{n} = \mu.$$

By Corollary 2.8.2, $Var(\overline{X}) = \sum_{i=1}^{n} \frac{1}{n^2} \sigma^2 = \frac{\sigma^2}{n}$. The proof that

$$S^2 = \frac{\sum_{i=1}^{n} X_i^2 - n\overline{X}^2}{n-1}$$
 is to be given in Exercise 2.8.1.

Theorem 2.8.A (continued)

Proof (continued). Finally,

$$\begin{split} E[S^2] &= E\left[\frac{\sum_{i=1}^n X_i^2 - n\overline{X}^2}{n-1}\right] \\ &= \frac{\sum_{i=1}^n E[X_i^2] - nE[\overline{X}^2]}{n-1} \text{ by Theorem 2.1.1} \\ &= \frac{n(\sigma^2 - \mu^2) - nE[\overline{X}^2]}{n-1} \text{ since } E[X^2] = \sigma^2 + \mu^2 \text{ by Note 1.9.A} \\ &= \frac{n(\sigma^2 + \mu^2) - n(\sigma^2/n + \mu^2)}{n-1} \text{ since } E(\overline{X}^2) = \text{Var}(\overline{X})^2 + E(\overline{X})^2 \\ &= \frac{\sigma^2}{n} + \mu^2 \\ &= \frac{(n-1)\sigma^2}{n-1} = \sigma^2, \end{split}$$

