Mathematical Statistics 1

Chapter 3. Some Special Distributions

3.1. The Binomial and Related Distributions—Proofs of Theorems

Table of contents

(1) Theorem 3.1.1

Theorem 3.1.1

Theorem 3.1.1. Let $X_{1}, X_{2}, \ldots, X_{m}$ be independent random variables such that X_{i} has the binomial $b\left(n_{i}, p\right)$ distribution for $i \in\{1,2, \ldots, m\}$. Let $Y=\sum_{i=1}^{m} X_{i}$. Then Y has a binomial $b\left(\sum_{i=1}^{m} n_{i}, p\right)$ distribution.

Proof. As shown in Note 3.1.A, the moment generating function of X_{i} is $M_{X_{i}}(t)=\left(1-p+p e^{t}\right)^{n_{i}}$. Since the X_{i} are independent, the hypotheses of Theorem 2.6.1 are satisfied and it implies

$$
M_{Y}(t)=\prod_{i=1}^{m}\left(1-p+p e^{t}\right)^{n_{i}}=\left(1-p+p e^{t}\right)^{\sum_{i=1}^{m} n_{i}}
$$

This is the moment generating function of the binomial $b\left(\sum_{i=1}^{m} n_{i}, p\right)$ distribution, as claimed.

Theorem 3.1.1

Theorem 3.1.1. Let $X_{1}, X_{2}, \ldots, X_{m}$ be independent random variables such that X_{i} has the binomial $b\left(n_{i}, p\right)$ distribution for $i \in\{1,2, \ldots, m\}$. Let $Y=\sum_{i=1}^{m} X_{i}$. Then Y has a binomial $b\left(\sum_{i=1}^{m} n_{i}, p\right)$ distribution.

Proof. As shown in Note 3.1.A, the moment generating function of X_{i} is $M_{X_{i}}(t)=\left(1-p+p e^{t}\right)^{n_{i}}$. Since the X_{i} are independent, the hypotheses of Theorem 2.6.1 are satisfied and it implies

$$
M_{Y}(t)=\prod_{i=1}^{m}\left(1-p+p e^{t}\right)^{n_{i}}=\left(1-p+p e^{t}\right)^{\sum_{i=1}^{m} n_{i}}
$$

This is the moment generating function of the binomial $b\left(\sum_{i=1}^{m} n_{i}, p\right)$ distribution, as claimed.

