Mathematical Statistics 1

Chapter 3. Some Special Distributions

3.2. The Poisson Distribution-Proofs of Theorems

Table of contents

(1) Theorem 3.2.1
(2) Exercise 3.2.13

Theorem 3.2.1

Theorem 3.2.1. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables and suppose X_{i} has a Poisson distribution with parameters λ_{i}. Then $Y=\sum_{i=1}^{n} X_{i}$ has a Poisson distribution with parameter $\sum_{i=1}^{n} \lambda_{i}$.

Proof. The moment generating function of X_{i} is $M_{X_{i}}(t)=e^{\lambda_{i}\left(e^{t}-1\right)}$. So by Theorem 2.6.1 the moment generating function of Y is

$$
M_{Y}(t)=\prod_{i=1}^{n} M_{X_{i}}(t)=\prod_{i=1}^{n} e^{\lambda_{i}\left(e^{t}-1\right)}=\exp \left(\sum_{i=1}^{n} \lambda_{i}\left(e^{t}-1\right)\right)
$$

By the uniqueness of moment generating functions (Theorem 1.9.2), we have that Y has a Poisson distribution with parameter $\sum_{i=1}^{n} \lambda_{i}$, as claimed

Theorem 3.2.1

Theorem 3.2.1. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables and suppose X_{i} has a Poisson distribution with parameters λ_{i}. Then $Y=\sum_{i=1}^{n} X_{i}$ has a Poisson distribution with parameter $\sum_{i=1}^{n} \lambda_{i}$.

Proof. The moment generating function of X_{i} is $M_{X_{i}}(t)=e^{\lambda_{i}\left(e^{t}-1\right)}$. So by Theorem 2.6.1 the moment generating function of Y is

$$
M_{Y}(t)=\prod_{i=1}^{n} M_{X_{i}}(t)=\prod_{i=1}^{n} e^{\lambda_{i}\left(e^{t}-1\right)}=\exp \left(\sum_{i=1}^{n} \lambda_{i}\left(e^{t}-1\right)\right) .
$$

By the uniqueness of moment generating functions (Theorem 1.9.2), we have that Y has a Poisson distribution with parameter $\sum_{i=1}^{n} \lambda_{i}$, as claimed

Exercise 3.2.13

Exercise 3.2.13. On the average, a grocer sells three of a certain article per week. How many of these should he have in stock so that the chance of his running out within a week is less than 0.01? Assume a Poisson distribution.

Solution. We have a Poisson distribution with parameter $\lambda=3$ (articles per week), so the probability mass functions is

Exercise 3.2.13

Exercise 3.2.13. On the average, a grocer sells three of a certain article per week. How many of these should he have in stock so that the chance of his running out within a week is less than 0.01? Assume a Poisson distribution.

Solution. We have a Poisson distribution with parameter $\lambda=3$ (articles per week), so the probability mass functions is
$p(x)=\left\{\begin{array}{cc}\frac{\lambda^{x} e^{-\lambda}}{x!} & \text { for } x \in\{0,1,2, \ldots\} \\ 0 & \text { otherwise }\end{array}=\left\{\begin{array}{cc}\frac{3^{x} e^{-3}}{x!} & \text { for } x \in\{0,1,2, \ldots\} \\ 0 & \text { otherwise. }\end{array}\right.\right.$
We want the value of k such that the probability that not more then k articles are sold in a week is at least $1-0.01=0.99$ (so that the probability that the grocer runs out of articles is at most 0.01). So we
want

Exercise 3.2.13

Exercise 3.2.13. On the average, a grocer sells three of a certain article per week. How many of these should he have in stock so that the chance of his running out within a week is less than 0.01? Assume a Poisson distribution.

Solution. We have a Poisson distribution with parameter $\lambda=3$ (articles per week), so the probability mass functions is
$p(x)=\left\{\begin{array}{cc}\frac{\lambda^{x} e^{-\lambda}}{x!} & \text { for } x \in\{0,1,2, \ldots\} \\ 0 & \text { otherwise }\end{array}=\left\{\begin{array}{cc}\frac{3^{x} e^{-3}}{x!} & \text { for } x \in\{0,1,2, \ldots\} \\ 0 & \text { otherwise. }\end{array}\right.\right.$
We want the value of k such that the probability that not more then k articles are sold in a week is at least $1-0.01=0.99$ (so that the probability that the grocer runs out of articles is at most 0.01). So we
want $\sum_{x=0}^{k} \frac{3^{x} e^{-3}}{x!} \geq 0.99$.

Exercise 3.2.13 (continued)

Exercise 3.2.13. On the average, a grocer sells three of a certain article per week. How many of these should he have in stock so that the chance of his running out within a week is less than 0.01 ? Assume a Poisson distribution.
Solution (continued). So we want $\sum_{x=0}^{k} \frac{3^{x} e^{-3}}{x!} \geq 0.99$. We appeal to software to solve this for the smallest value of k. Using the Poisson distribution applet of Matt Bognar on his University of lowa webpage, we find the following values of k and associated probabilities:

\mathbf{k}	$\mathbf{P}(\mathbf{X} \leq \mathbf{k})$
5	0.91608
6	0.96649
7	0.98881
8	0.9962

So the grocer should buy $k=8$ articles.

