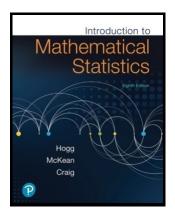
Mathematical Statistics 1

Chapter 3. Some Special Distributions 3.3. The Γ , χ^2 , and β Distributions—Proofs of Theorems



Theorem 3.3.1

Theorem 3.3.1. Let $X_1, X_2, ..., X_n$ be independent random variables. Suppose, for i = 1, 2, ..., n that X_i has a $\Gamma(\alpha_i, \beta)$ distribution. Let $Y = \sum_{i=1}^n X_i$. Then Y has a $\Gamma(\sum_{i=1}^n \alpha_i, \beta)$ distribution.

Proof. The hypothesized independence gives, by Theorem 2.6.1, that

$$M_Y(t) = \prod_{i=1}^n M_i(t)$$

= $\prod_{i=1}^n \frac{1}{(1-\beta t)^{\alpha_i}}$ for $t < 1/\beta$ by Note 3.3.C
= $(1-\beta t)^{-\sum_{i=1}^n \alpha_i}$ for $t < 1/\beta$

which is the moment generating function of a $\Gamma(\sum_{i=1}^{n} \alpha_i, \beta)$ distribution. By the uniqueness of the moment generating function (Theorem 1.9.2), the result follows.

Theorem 3.3.1. Let $X_1, X_2, ..., X_n$ be independent random variables. Suppose, for i = 1, 2, ..., n that X_i has a $\Gamma(\alpha_i, \beta)$ distribution. Let $Y = \sum_{i=1}^n X_i$. Then Y has a $\Gamma(\sum_{i=1}^n \alpha_i, \beta)$ distribution.

Proof. The hypothesized independence gives, by Theorem 2.6.1, that

$$M_{Y}(t) = \prod_{i=1}^{n} M_{i}(t)$$

=
$$\prod_{i=1}^{n} \frac{1}{(1-\beta t)^{\alpha_{i}}} \text{ for } t < 1/\beta \text{ by Note 3.3.C}$$

=
$$(1-\beta t)^{-\sum_{i=1}^{n} \alpha_{i}} \text{ for } t < 1/\beta$$

which is the moment generating function of a $\Gamma(\sum_{i=1}^{n} \alpha_i, \beta)$ distribution. By the uniqueness of the moment generating function (Theorem 1.9.2), the result follows.

Theorem 3.3.2. Let X have a $\chi^2(r)$ distribution. If k > -r/2 then $E(X^k)$ exists and is

$$E(X^k) = \frac{2^k \Gamma(r/2+k)}{\Gamma(r/2)}$$
 if $k > -r/2$.

Proof. We have

$$E(X^{k}) = \int_{-\infty}^{\infty} x^{k} f(x) dx$$

= $\int_{0}^{\infty} x^{k} \frac{1}{\Gamma(r/2)2^{r/2}} x^{r/2-1} e^{-x/2} dx$
= $\int_{0}^{\infty} \frac{1}{\Gamma(r/2)2^{r/2}} x^{r/2+l-1} e^{-x/2} dx$
[left $u = x/2$ and $du = 1/2 dx$ or $2 du = dx$]
= $\int_{0}^{\infty} \frac{1}{\Gamma(r/2)2^{r/2-1}} 2^{r/2+k-1} u^{r/2+k-1} e^{-u} du$

Theorem 3.3.2. Let X have a $\chi^2(r)$ distribution. If k > -r/2 then $E(X^k)$ exists and is

$$E(X^k) = \frac{2^k \Gamma(r/2+k)}{\Gamma(r/2)}$$
 if $k > -r/2$.

Proof. We have

$$E(X^{k}) = \int_{-\infty}^{\infty} x^{k} f(x) dx$$

= $\int_{0}^{\infty} x^{k} \frac{1}{\Gamma(r/2)2^{r/2}} x^{r/2-1} e^{-x/2} dx$
= $\int_{0}^{\infty} \frac{1}{\Gamma(r/2)2^{r/2}} x^{r/2+l-1} e^{-x/2} dx$
[left $u = x/2$ and $du = 1/2 dx$ or $2 du = dx$]
= $\int_{0}^{\infty} \frac{1}{\Gamma(r/2)2^{r/2-1}} 2^{r/2+k-1} u^{r/2+k-1} e^{-u} du$

Theorem 3.3.2 (continued)

Theorem 3.3.2. Let X have a $\chi^2(r)$ distribution. If k > -r/2 then $E(X^k)$ exists and is

$$E(X^k) = \frac{2^k \Gamma(r/2+k)}{\Gamma(r/2)}$$
 if $k > -r/2$.

Proof. We have

$$E(X^{k}) = \int_{0}^{\infty} \frac{1}{\Gamma(r/2)2^{r/2-1}} 2^{r/2+k-1} u^{r/2+k-1} e^{-u} du$$

= $\frac{2^{k}}{\Gamma(r/2)} \int_{0}^{\infty} u^{(r/2+k)-1} e^{-u} du$
= $\frac{2^{k}}{\Gamma(r/2)} \Gamma(r/2+k)$ for $r/2+k > 0$.

So $E(X^k) = 2^k \Gamma(r/2 + k) / \Gamma(r/2)$ for k > -r/2, as claimed.

Corollary 3.3.1

Corollary 3.3.1. Let X_1, X_2, \ldots, X_n be independent random variables. Suppose X_i has a $\chi^2(r_i)$ distribution for $i = 1, 2, \ldots, n$. Let $Y = \sum_{i=1}^n X_i$. Then Y has a $\chi^2(\sum_{i=1}^n r_i)$ -distribution.

Proof. Since a $\chi^2(r_i)$ -distribution is also a $\Gamma(r/2, 2)$ distribution, then by Theorem 3.3.1 the distribution of Y is

$$\Gamma\left(\sum_{i=1}^{n}(r_i/2),2\right)=\Gamma\left(\frac{1}{2}\left(\sum_{i=1}^{n}r_i\right),2\right),$$

which is also a $\chi^2(\sum_{i=1}^n r_i)$ -distribution, as claimed.

Corollary 3.3.1

Corollary 3.3.1. Let X_1, X_2, \ldots, X_n be independent random variables. Suppose X_i has a $\chi^2(r_i)$ distribution for $i = 1, 2, \ldots, n$. Let $Y = \sum_{i=1}^n X_i$. Then Y has a $\chi^2(\sum_{i=1}^n r_i)$ -distribution.

Proof. Since a $\chi^2(r_i)$ -distribution is also a $\Gamma(r/2, 2)$ distribution, then by Theorem 3.3.1 the distribution of Y is

$$\Gamma\left(\sum_{i=1}^{n} (r_i/2), 2\right) = \Gamma\left(\frac{1}{2}\left(\sum_{i=1}^{n} r_i\right), 2\right),$$

which is also a $\chi^2(\sum_{i=1}^n r_i)$ -distribution, as claimed.