Mathematical Statistics 1

Chapter 3. Some Special Distributions

3.5. The Multivariate Normal Distribution—Proofs of Theorems

Table of contents

(1) Lemma 3.5.A
(2) Theorem 3.5.1
(3) Theorem 3.5.2
(4) Corollary 3.5.1
(5) Theorem 3.5.3
(6) Theorem 3.5.4
(7) Exercise 3.5.8
(8) Lemma 3.5.B

Lemma 3.5.A

Lemma 3.5.A. Let random vector (X, Y) have the bivariate normal distribution. Then X and Y are independent if and only if they are uncorrelated (that is, $\rho=0$).
Proof. The joint moment generating function of (X, Y) is (by Note 3.5.B)

$$
M_{(X, Y)}\left(t_{1}, t_{2}\right)=\exp \left(t_{1} \mu_{1}+t_{2} \mu_{2}+\frac{1}{2}\left(t_{1}^{2} \sigma_{1}^{2}+2 t_{1} t_{2} \rho \sigma_{1} \sigma_{2}+t_{2}^{2} \sigma_{2}^{2}\right)\right) .
$$

Lemma 3.5.A

Lemma 3.5.A. Let random vector (X, Y) have the bivariate normal distribution. Then X and Y are independent if and only if they are uncorrelated (that is, $\rho=0$).
Proof. The joint moment generating function of (X, Y) is (by Note 3.5.B)

$$
M_{(X, Y)}\left(t_{1}, t_{2}\right)=\exp \left(t_{1} \mu_{1}+t_{2} \mu_{2}+\frac{1}{2}\left(t_{1}^{2} \sigma_{1}^{2}+2 t_{1} t_{2} \rho \sigma_{1} \sigma_{2}+t_{2}^{2} \sigma_{2}^{2}\right)\right)
$$

If $\rho=0$ then the joint moment generating function becomes

$$
M_{(X, Y)}\left(t_{1}, t_{2}\right)=\exp \left(t_{1} \mu_{1}+t_{2} \mu_{2}+t_{1}^{2} \sigma_{1}^{2} / 2+t_{2}^{2} \sigma_{2}^{2} / 2\right)
$$

$=\exp \left(t_{1} \mu_{1}+t_{1}^{2} \sigma_{2}^{2} / 2\right) \exp \left(t_{2} \mu_{2}+t_{2} \sigma_{2}^{2} / 2\right)=M_{(X, Y)}\left(t_{1}, 0\right) M_{(X, Y)}\left(0, t_{2}\right)$. So by Theorem 2.4.5, X and Y are independent.

Lemma 3.5.A

Lemma 3.5.A. Let random vector (X, Y) have the bivariate normal distribution. Then X and Y are independent if and only if they are uncorrelated (that is, $\rho=0$).
Proof. The joint moment generating function of (X, Y) is (by Note 3.5.B)

$$
M_{(X, Y)}\left(t_{1}, t_{2}\right)=\exp \left(t_{1} \mu_{1}+t_{2} \mu_{2}+\frac{1}{2}\left(t_{1}^{2} \sigma_{1}^{2}+2 t_{1} t_{2} \rho \sigma_{1} \sigma_{2}+t_{2}^{2} \sigma_{2}^{2}\right)\right)
$$

If $\rho=0$ then the joint moment generating function becomes

$$
\begin{gathered}
M_{(X, Y)}\left(t_{1}, t_{2}\right)=\exp \left(t_{1} \mu_{1}+t_{2} \mu_{2}+t_{1}^{2} \sigma_{1}^{2} / 2+t_{2}^{2} \sigma_{2}^{2} / 2\right) \\
=\exp \left(t_{1} \mu_{1}+t_{1}^{2} \sigma_{2}^{2} / 2\right) \exp \left(t_{2} \mu_{2}+t_{2} \sigma_{2}^{2} / 2\right)=M_{(X, Y)}\left(t_{1}, 0\right) M_{(X, Y)}\left(0, t_{2}\right)
\end{gathered}
$$

So by Theorem 2.4.5, X and Y are independent.
Conversely, Suppose X and Y are independent. The by Theorem 2.4.5, $M_{(X, Y)}\left(t_{1}, t_{2}\right)=M_{(X, Y)}\left(t_{1}, 0\right) M_{(X, Y)}\left(0, t_{2}\right)$ and so the form of the joint moment generating function $M_{(X, Y)}\left(t_{1}, t_{2}\right)$ given above, we must have $\rho=0$, as claimed.

Lemma 3.5.A

Lemma 3.5.A. Let random vector (X, Y) have the bivariate normal distribution. Then X and Y are independent if and only if they are uncorrelated (that is, $\rho=0$).
Proof. The joint moment generating function of (X, Y) is (by Note 3.5.B)

$$
M_{(X, Y)}\left(t_{1}, t_{2}\right)=\exp \left(t_{1} \mu_{1}+t_{2} \mu_{2}+\frac{1}{2}\left(t_{1}^{2} \sigma_{1}^{2}+2 t_{1} t_{2} \rho \sigma_{1} \sigma_{2}+t_{2}^{2} \sigma_{2}^{2}\right)\right)
$$

If $\rho=0$ then the joint moment generating function becomes

$$
\begin{gathered}
M_{(X, Y)}\left(t_{1}, t_{2}\right)=\exp \left(t_{1} \mu_{1}+t_{2} \mu_{2}+t_{1}^{2} \sigma_{1}^{2} / 2+t_{2}^{2} \sigma_{2}^{2} / 2\right) \\
=\exp \left(t_{1} \mu_{1}+t_{1}^{2} \sigma_{2}^{2} / 2\right) \exp \left(t_{2} \mu_{2}+t_{2} \sigma_{2}^{2} / 2\right)=M_{(X, Y)}\left(t_{1}, 0\right) M_{(X, Y)}\left(0, t_{2}\right)
\end{gathered}
$$

So by Theorem 2.4.5, X and Y are independent.
Conversely, Suppose X and Y are independent. The by Theorem 2.4.5, $M_{(X, Y)}\left(t_{1}, t_{2}\right)=M_{(X, Y)}\left(t_{1}, 0\right) M_{(X, Y)}\left(0, t_{2}\right)$ and so the form of the joint moment generating function $M_{(X, Y)}\left(t_{1}, t_{2}\right)$ given above, we must have $\rho=0$, as claimed.

Theorem 3.5.1

Theorem 3.5.1. Suppose \mathbf{X} has a $N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ distribution, where $\boldsymbol{\Sigma}$ is positive definite. Then the random variable $Y=(\mathbf{X}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}(\mathbf{X}-\boldsymbol{\mu})$ has a $\chi^{2}(n)$ distribution.

Proof. Since $\mathbf{X}=\Sigma^{1 / 2} \mathbf{Z}+\mu$ then

$$
\begin{aligned}
Y & =(\mathbf{X}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{X}-\boldsymbol{\mu})=\left(\boldsymbol{\Sigma}^{1 / 2} \mathbf{Z}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\Sigma}^{1 / 2} \mathbf{Z}\right) \\
& =\mathbf{Z}^{\prime} \boldsymbol{\Sigma}^{1 / 2} \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}^{1 / 2} \mathbf{Z} \text { since } \boldsymbol{\Sigma}^{1 / 2} \text { is symmetric } \\
& =\mathbf{Z}^{\prime} \mathbf{Z}=\sum_{i=1}^{n} Z_{i}^{2} .
\end{aligned}
$$

Now Z_{i}^{2} has a χ^{2} distribution by Theorem 2.4.1. So by Corollary 3.3.1, $Y=\sum_{i=1}^{n} Z_{i}^{2}$ has a $\chi^{2}(n)$ distribution, as claimed.

Theorem 3.5.1

Theorem 3.5.1. Suppose \mathbf{X} has a $N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ distribution, where $\boldsymbol{\Sigma}$ is positive definite. Then the random variable $Y=(\mathbf{X}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}(\mathbf{X}-\boldsymbol{\mu})$ has a $\chi^{2}(n)$ distribution.

Proof. Since $\mathbf{X}=\boldsymbol{\Sigma}^{\mathbf{1 / 2}} \mathbf{Z}+\boldsymbol{\mu}$ then

$$
\begin{aligned}
Y & =(\mathbf{X}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{X}-\boldsymbol{\mu})=\left(\boldsymbol{\Sigma}^{1 / 2} \mathbf{Z}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\Sigma}^{1 / 2} \mathbf{Z}\right) \\
& =\mathbf{Z}^{\prime} \boldsymbol{\Sigma}^{1 / 2} \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}^{1 / 2} \mathbf{Z} \text { since } \boldsymbol{\Sigma}^{1 / 2} \text { is symmetric } \\
& =\mathbf{Z}^{\prime} \mathbf{Z}=\sum_{i=1}^{n} Z_{i}^{2}
\end{aligned}
$$

Now Z_{i}^{2} has a χ^{2} distribution by Theorem 2.4.1. So by Corollary 3.3.1, $Y=\sum_{i=1}^{n} Z_{i}^{2}$ has a $\chi^{2}(n)$ distribution, as claimed.

Theorem 3.5.2

Theorem 3.5.2. Suppose \mathbf{X} has a $N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ distribution. Let $\mathbf{Y}=\mathbf{A X}+\mathbf{b}$, where \mathbf{A} is an $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^{m}$. Then \mathbf{Y} has a $N_{m}\left(\mathbf{A} \boldsymbol{\mu}+\mathbf{b}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}\right)$ distribution.

Proof. The moment generating function of Y is

$$
\begin{aligned}
M_{\mathbf{Y}}(\mathbf{t}) & =E\left[\exp \left(\mathbf{t}^{\prime} \mathbf{Y}\right)\right]=E\left[\exp \left(\mathbf{t}^{\prime}((A) \mathbf{X}+\mathbf{b})\right)\right] \\
& =E\left[\exp \left(\mathbf{t}^{\prime} \mathbf{A} \mathbf{X}+\mathbf{t}^{\prime} \mathbf{b}\right)\right]=E\left[\exp \left(\mathbf{t}^{\prime} \mathbf{b}\right) \exp \left(\mathbf{t}^{\prime} \mathbf{A} \mathbf{X}\right)\right] \\
& =\exp \left(\mathbf{t}^{\prime} \mathbf{b}\right) E\left[\exp \left(\mathbf{t}^{\prime} \mathbf{A} \mathbf{X}\right)\right]=\exp \left(\mathbf{t}^{\prime} \mathbf{b}\right) E\left[\exp \left(\left(\mathbf{A}^{\prime} \mathbf{t}\right)^{\prime} \mathbf{X}\right)\right] \\
& =\exp \left(\mathbf{t}^{\prime} \mathbf{b}\right) \exp \left(\left(\mathbf{A}^{\prime} \mathbf{t}\right)^{\prime} \boldsymbol{\mu}+\frac{1}{2}\left(\mathbf{A}^{\prime} \mathbf{t}\right)^{\prime} \mathbf{\Sigma}\left(\mathbf{A}^{\prime} \mathbf{t}\right)\right) \text { by Definition 3.5.1 } \\
& =\exp \left(\left(\mathbf{t}^{\prime} \mathbf{b}\right)+\mathbf{t}^{\prime} \mathbf{A} \boldsymbol{\mu}+\frac{1}{2} \mathbf{t}^{\prime} \mathbf{A} \mathbf{\Sigma} \mathbf{A}^{\prime} \mathbf{t}\right) \\
& =\exp \left(\mathbf{t}^{\prime}(\mathbf{A} \boldsymbol{\mu}+\mathbf{b})+\frac{1}{2} \mathbf{t}^{\prime} \mathbf{A} \mathbf{\Sigma} \mathbf{A}^{\prime} \mathbf{t}\right) \cdots
\end{aligned}
$$

Theorem 3.5.2

Theorem 3.5.2. Suppose \mathbf{X} has a $N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ distribution. Let $\mathbf{Y}=\mathbf{A X}+\mathbf{b}$, where \mathbf{A} is an $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^{m}$. Then \mathbf{Y} has a $N_{m}\left(\mathbf{A} \boldsymbol{\mu}+\mathbf{b}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}\right)$ distribution.

Proof. The moment generating function of \mathbf{Y} is

$$
\begin{aligned}
M_{\mathbf{Y}}(\mathbf{t}) & =E\left[\exp \left(\mathbf{t}^{\prime} \mathbf{Y}\right)\right]=E\left[\exp \left(\mathbf{t}^{\prime}((A) \mathbf{X}+\mathbf{b})\right)\right] \\
& =E\left[\exp \left(\mathbf{t}^{\prime} \mathbf{A X}+\mathbf{t}^{\prime} \mathbf{b}\right)\right]=E\left[\exp \left(\mathbf{t}^{\prime} \mathbf{b}\right) \exp \left(\mathbf{t}^{\prime} \mathbf{A} \mathbf{X}\right)\right] \\
& =\exp \left(\mathbf{t}^{\prime} \mathbf{b}\right) E\left[\exp \left(\mathbf{t}^{\prime} \mathbf{A X}\right)\right]=\exp \left(\mathbf{t}^{\prime} \mathbf{b}\right) E\left[\exp \left(\left(\mathbf{A}^{\prime} \mathbf{t}\right)^{\prime} \mathbf{X}\right)\right] \\
& =\exp \left(\mathbf{t}^{\prime} \mathbf{b}\right) \exp \left(\left(\mathbf{A}^{\prime} \mathbf{t}\right)^{\prime} \boldsymbol{\mu}+\frac{1}{2}\left(\mathbf{A}^{\prime} \mathbf{t}\right)^{\prime} \boldsymbol{\Sigma}\left(\mathbf{A}^{\prime} \mathbf{t}\right)\right) \text { by Definition 3.5.1 } \\
& =\exp \left(\left(\mathbf{t}^{\prime} \mathbf{b}\right)+\mathbf{t}^{\prime} \mathbf{A} \boldsymbol{\mu}+\frac{1}{2} \mathbf{t}^{\prime} \mathbf{A} \mathbf{\Sigma} \mathbf{A}^{\prime} \mathbf{t}\right) \\
& =\exp \left(\mathbf{t}^{\prime}(\mathbf{A} \boldsymbol{\mu}+\mathbf{b})+\frac{1}{2} \mathbf{t}^{\prime} \mathbf{A} \mathbf{\Sigma} \mathbf{A}^{\prime} \mathbf{t}\right) \ldots
\end{aligned}
$$

Theorem 3.5.2 (continued)

Theorem 3.5.2. Suppose \mathbf{X} has a $N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ distribution. Let $\mathbf{Y}=\mathbf{A X}+\mathbf{b}$, where \mathbf{A} is an $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^{m}$. Then \mathbf{Y} has a $N_{m}\left(\mathbf{A} \boldsymbol{\mu}+\mathbf{b}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}\right)$ distribution.

Proof. ...

$$
M_{\mathbf{Y}}(\mathbf{t})=\exp \left(\mathbf{t}^{\prime}(\mathbf{A} \boldsymbol{\mu}+\mathbf{b})+\frac{1}{2} \mathbf{t}^{\prime} \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime} \mathbf{t}\right),
$$

which is the moment generating function of an $N_{m}\left(\mathbf{A} \boldsymbol{\mu}+\mathbf{b}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}\right)$ distribution, as claimed.

Corollary 3.5.1

Corollary 3.5.1. Suppose \mathbf{X} has a $N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ distribution partitioned as

$$
\mathbf{X}=\left[\begin{array}{l}
\mathbf{X}_{1} \\
\mathbf{X}_{2}
\end{array}\right], \boldsymbol{\mu}=\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right], \text { and } \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]
$$

where \mathbf{X}_{1} and $\boldsymbol{\mu}_{1}$ are m dimensional and $\boldsymbol{\Sigma}_{11}$ is $m \times m$. Then \mathbf{X}_{1} has a $N_{m}\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{11}\right)$ distribution.
Proof. Define $m \times(m+p)$ matrix $\mathbf{A}=\left[\begin{array}{ll}I_{m} & \mathbf{0}_{m p}\end{array}\right]$ where $\mathbf{0}_{m p}$ is an $m \times p$ matrix of zeros. Then $\mathbf{X}_{1}=\mathbf{A} \mathbf{X}$ (notice that \mathbf{A} is $m \times(m+p)$ and \mathbf{X} is $(m+p) \times 1$ so $\left.\mathbf{X}_{1}=m \times 1\right)$. So with $\mathbf{b}=\mathbf{0}$, we have by Theorem 3.5.2 that \mathbf{X}_{1} has a $N_{m}\left(\mathbf{A} \mu, \mathbf{A} \Sigma \mathbf{A}^{\prime}\right)$ distribution. Now $\mathbf{A} \mu=\mu_{1}$ and writing $\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}$ in terms of partitioned matrices gives

$$
A \Sigma A^{\prime}=\left[\begin{array}{ll}
I_{m} & 0_{m p}
\end{array}\right]\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]=\left[\begin{array}{c}
I_{m} \\
0_{m p}
\end{array}\right]=\Sigma_{11}
$$

(notice that Σ_{11} is a matrix itself so we do not write $\left[\Sigma_{11}\right]$).

Corollary 3.5.1

Corollary 3.5.1. Suppose \mathbf{X} has a $N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ distribution partitioned as

$$
\mathbf{X}=\left[\begin{array}{l}
\mathbf{X}_{1} \\
\mathbf{X}_{2}
\end{array}\right], \boldsymbol{\mu}=\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right], \text { and } \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]
$$

where \mathbf{X}_{1} and $\boldsymbol{\mu}_{1}$ are m dimensional and $\boldsymbol{\Sigma}_{11}$ is $m \times m$. Then \mathbf{X}_{1} has a $N_{m}\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{11}\right)$ distribution.
Proof. Define $m \times(m+p)$ matrix $\mathbf{A}=\left[\mathbf{I}_{m} \mathbf{0}_{m p}\right]$ where $\mathbf{0}_{m p}$ is an $m \times p$ matrix of zeros. Then $\mathbf{X}_{1}=\mathbf{A} \mathbf{X}$ (notice that \mathbf{A} is $m \times(m+p)$ and \mathbf{X} is $(m+p) \times 1$ so $\left.\mathbf{X}_{1}=m \times 1\right)$. So with $\mathbf{b}=\mathbf{0}$, we have by Theorem 3.5.2 that \mathbf{X}_{1} has a $N_{m}\left(\mathbf{A} \boldsymbol{\mu}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}\right)$ distribution. Now $\mathbf{A} \boldsymbol{\mu}=\boldsymbol{\mu}_{1}$ and writing $\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}$ in terms of partitioned matrices gives

$$
\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}=\left[\begin{array}{ll}
\mathbf{I}_{m} & \mathbf{0}_{m p}
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{I}_{m} \\
\mathbf{0}_{m p}
\end{array}\right]=\boldsymbol{\Sigma}_{11}
$$

(notice that $\boldsymbol{\Sigma}_{11}$ is a matrix itself so we do not write [$\left.\Sigma_{11}\right]$).

Corollary 3.5.1 (continued)

Corollary 3.5.1. Suppose \mathbf{X} has a $N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ distribution partitioned as

$$
\mathbf{X}=\left[\begin{array}{l}
\mathbf{X}_{1} \\
\mathbf{X}_{2}
\end{array}\right], \boldsymbol{\mu}=\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right], \text { and } \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]
$$

where \mathbf{X}_{1} and $\boldsymbol{\mu}_{1}$ are m dimensional and $\boldsymbol{\Sigma}_{11}$ is $m \times m$. Then \mathbf{X}_{1} has a $N_{m}\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{11}\right)$ distribution.

Proof. So $\mathbf{A} \boldsymbol{\mu}=\boldsymbol{\mu}_{1}$ and $\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}=\boldsymbol{\Sigma}_{11}$. Hence \mathbf{X}_{1} has a $N_{m}\left(\mathbf{A} \boldsymbol{\mu}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}\right)=N_{m}\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{11}\right)$ distribution, as claimed.

Theorem 3.5.3

Theorem 3.5.3. Suppose \mathbf{X} has a $N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ distribution, partitioned as

$$
\mathbf{X}=\left[\begin{array}{l}
\mathbf{X}_{1} \\
\mathbf{X}_{2}
\end{array}\right], \boldsymbol{\mu}=\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right], \text { and } \boldsymbol{\Sigma}=\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right] .
$$

Then \mathbf{X}_{1} and \mathbf{X}_{2} are independent if and only if the covariance satisfies $\Sigma_{12}=\mathbf{0}$.

Proof. Since $\operatorname{cov}\left(X_{i}, X_{j}\right)=\operatorname{cov}\left(X_{j}, X_{i}\right)$ then $\boldsymbol{\Sigma}_{21}=\boldsymbol{\Sigma}_{12}^{\prime}$. By Definition 3.5.1, the moment generating function of \mathbf{X} is

$$
M_{\mathbf{x}}(\mathbf{t})=\exp \left(\mathbf{t}^{\prime} \boldsymbol{\mu}+(1 / 2) \mathbf{t}^{\prime} \boldsymbol{\Sigma} \mathbf{t}\right) \text { for } \mathbb{R}^{n} .
$$

Since $\mathbf{t}^{\prime}=\left[\begin{array}{ll}\mathbf{t}_{1}^{\prime} & \mathbf{t}_{2}^{\prime}\end{array}\right]$ and $\boldsymbol{\mu}=\left[\begin{array}{l}\boldsymbol{\mu}_{1} \\ \boldsymbol{\mu}_{2}\end{array}\right]$ then $\mathbf{t}^{\prime} \boldsymbol{\mu}=\mathbf{t}_{1}^{\prime} \boldsymbol{\mu}_{1}+\mathbf{t}_{2}^{\prime} \boldsymbol{\mu}_{2}$.

Theorem 3.5.3

Theorem 3.5.3. Suppose \mathbf{X} has a $N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ distribution, partitioned as

$$
\mathbf{X}=\left[\begin{array}{l}
\mathbf{X}_{1} \\
\mathbf{X}_{2}
\end{array}\right], \boldsymbol{\mu}=\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right], \text { and } \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right] .
$$

Then \mathbf{X}_{1} and \mathbf{X}_{2} are independent if and only if the covariance satisfies $\Sigma_{12}=\mathbf{0}$.

Proof. Since $\operatorname{cov}\left(X_{i}, X_{j}\right)=\operatorname{cov}\left(X_{j}, X_{i}\right)$ then $\boldsymbol{\Sigma}_{21}=\boldsymbol{\Sigma}_{12}^{\prime}$. By Definition 3.5.1, the moment generating function of \mathbf{X} is

$$
M_{\mathbf{x}}(\mathbf{t})=\exp \left(\mathbf{t}^{\prime} \boldsymbol{\mu}+(1 / 2) \mathbf{t}^{\prime} \boldsymbol{\Sigma} \mathbf{t}\right) \text { for } \mathbb{R}^{n}
$$

Since $\mathbf{t}^{\prime}=\left[\begin{array}{ll}\mathbf{t}_{1}^{\prime} & \mathbf{t}_{2}^{\prime}\end{array}\right]$ and $\boldsymbol{\mu}=\left[\begin{array}{l}\boldsymbol{\mu}_{1} \\ \boldsymbol{\mu}_{2}\end{array}\right]$ then $\mathbf{t}^{\prime} \boldsymbol{\mu}=\mathbf{t}_{1}^{\prime} \boldsymbol{\mu}_{1}+\mathbf{t}_{2}^{\prime} \boldsymbol{\mu}_{2}$.

Theorem 3.5.3 (continued 1)

Proof (continued). Also,

$$
\begin{aligned}
\mathbf{t}^{\prime} \boldsymbol{\Sigma} \mathbf{t} & =\left[\mathbf{t}_{1}^{\prime} \mathbf{t}_{2}^{\prime}\right]\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right] \\
& =\left[\mathbf{t}_{1}^{\prime} \boldsymbol{\Sigma}_{11}+\mathbf{t}_{2} \boldsymbol{\Sigma}_{21} \mathbf{t}_{1}^{\prime} \boldsymbol{\Sigma}_{12}+\mathbf{t}_{2}^{\prime} \boldsymbol{\Sigma}_{22}\right]\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right] \\
& =\mathbf{t}_{1}^{\prime} \boldsymbol{\Sigma}_{11} \mathbf{t}_{1}+\mathbf{t}_{2} \boldsymbol{\Sigma}_{21} \mathbf{t}_{1}+\mathbf{t}_{1}^{\prime} \boldsymbol{\Sigma}_{12} \mathbf{t}_{2}+\mathbf{t}_{2}^{\prime} \boldsymbol{\Sigma}_{22} \mathbf{t}_{2} .
\end{aligned}
$$

By Corollary 3.5.1, \mathbf{X}_{1} has a $N_{m}\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{11}\right)$ distribution and (similarly) \mathbf{X}_{2} has a $N_{p}\left(\boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{22}\right)$ distribution. So by Definition 3.5.1, the marginal distribution functions are $M_{\mathbf{X}_{1}}\left(\mathbf{t}_{1}\right)=\exp \left(\mathbf{t}_{1}^{\prime} \boldsymbol{\mu}_{1}+(1 / 2) \mathbf{t}_{1}^{\prime} \boldsymbol{\Sigma}_{11} \mathbf{t}_{1}\right)$ and $M_{\mathbf{X}_{2}}\left(\mathbf{t}_{2}\right)=\exp \left(\mathbf{t}_{2}^{\prime} \boldsymbol{\mu}_{2}+(1 / 2) \mathbf{t}_{2}^{\prime} \boldsymbol{\Sigma}_{22} \mathbf{t}_{2}\right)$ for $\left[\mathbf{t}_{1}^{\prime} \mathbf{t}_{2}^{\prime}\right] \in \mathbb{R}^{n}$.
(and its observation that Theorem 2.4.5 can be extended to several random variables) we have that \mathbf{X}_{1} and \mathbf{X}_{2} are independent if and only if $M_{\mathbf{X}}(\mathbf{t})=M_{\mathbf{X}_{1}}\left(\mathbf{t}_{1}\right) M_{\mathbf{X}_{2}}\left(\mathbf{t}_{2}\right)$.

Theorem 3.5.3 (continued 1)

Proof (continued). Also,

$$
\begin{aligned}
\mathbf{t}^{\prime} \boldsymbol{\Sigma} \mathbf{t} & =\left[\mathbf{t}_{1}^{\prime} \mathbf{t}_{2}^{\prime}\right]\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right] \\
& =\left[\mathbf{t}_{1}^{\prime} \boldsymbol{\Sigma}_{11}+\mathbf{t}_{2} \boldsymbol{\Sigma}_{21} \mathbf{t}_{1}^{\prime} \boldsymbol{\Sigma}_{12}+\mathbf{t}_{2}^{\prime} \boldsymbol{\Sigma}_{22}\right]\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right] \\
& =\mathbf{t}_{1}^{\prime} \boldsymbol{\Sigma}_{11} \mathbf{t}_{1}+\mathbf{t}_{2} \boldsymbol{\Sigma}_{21} \mathbf{t}_{1}+\mathbf{t}_{1}^{\prime} \boldsymbol{\Sigma}_{12} \mathbf{t}_{2}+\mathbf{t}_{2}^{\prime} \boldsymbol{\Sigma}_{22} \mathbf{t}_{2} .
\end{aligned}
$$

By Corollary 3.5.1, \mathbf{X}_{1} has a $N_{m}\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{11}\right)$ distribution and (similarly) \mathbf{X}_{2} has a $N_{p}\left(\boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{22}\right)$ distribution. So by Definition 3.5.1, the marginal distribution functions are $M_{\mathbf{x}_{1}}\left(\mathbf{t}_{1}\right)=\exp \left(\mathbf{t}_{1}^{\prime} \boldsymbol{\mu}_{1}+(1 / 2) \mathbf{t}_{1}^{\prime} \boldsymbol{\Sigma}_{11} \mathbf{t}_{1}\right)$ and $M_{\mathbf{X}_{2}}\left(\mathbf{t}_{2}\right)=\exp \left(\mathbf{t}_{2}^{\prime} \boldsymbol{\mu}_{2}+(1 / 2) \mathbf{t}_{2}^{\prime} \boldsymbol{\Sigma}_{22} \mathbf{t}_{2}\right)$ for $\left[\mathbf{t}_{1}^{\prime} \mathbf{t}_{2}^{\prime}\right] \in \mathbb{R}^{n}$. By Note 2.6.C (and its observation that Theorem 2.4.5 can be extended to several random variables) we have that \mathbf{X}_{1} and \mathbf{X}_{2} are independent if and only if $M_{\mathbf{X}}(\mathbf{t})=M_{\mathbf{x}_{1}}\left(\mathbf{t}_{1}\right) M_{\mathbf{X}_{2}}\left(\mathbf{t}_{2}\right)$.

Theorem 3.5.3 (continued 2)

Theorem 3.5.3. Suppose \mathbf{X} has a $N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ distribution, partitioned as

$$
\mathbf{X}=\left[\begin{array}{l}
\mathbf{X}_{1} \\
\mathbf{X}_{2}
\end{array}\right], \boldsymbol{\mu}=\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right], \text { and } \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right] .
$$

Then \mathbf{X}_{1} and \mathbf{X}_{2} are independent if and only if the covariance satisfies $\Sigma_{12}=0$.

Proof (continued). If $\boldsymbol{\Sigma}_{12}=\mathbf{0}$, so that $\boldsymbol{\Sigma}_{21}=\boldsymbol{\Sigma}_{12}^{\prime}=\mathbf{0}^{\prime}$, then $M_{\mathbf{X}}(\mathbf{t})=M_{\mathbf{X}_{1}}\left(\mathbf{t}_{1}\right) M_{\mathbf{X}_{2}}\left(\mathbf{t}_{2}\right)$ and so by Note 2.6.C \mathbf{X}_{1} and \mathbf{X}_{2} are independent, as claimed. If X_{1} and \mathbf{X}_{2} are independent, then by Note 2.6.C $M_{\mathrm{x}}(\mathrm{t})=M_{\mathrm{x}_{1}}\left(\mathrm{t}_{1}\right) M_{\mathrm{x}_{2}}\left(\mathrm{t}_{2}\right)$ and so $\mathrm{t}_{2}^{\prime} \Sigma_{21} \mathrm{t}_{1}=0=\mathrm{t}_{1}^{\prime} \Sigma_{12} \mathrm{t}_{2}$ for all

$$
\in \mathbb{R}^{n} \text {. So we must have } \boldsymbol{\Sigma}_{12}=\mathbf{0} \text { and } \boldsymbol{\Sigma}_{21}=\mathbf{0}^{\prime} \text {, as claimed. }
$$

Theorem 3.5.3 (continued 2)

Theorem 3.5.3. Suppose \mathbf{X} has a $N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ distribution, partitioned as

$$
\mathbf{X}=\left[\begin{array}{l}
\mathbf{X}_{1} \\
\mathbf{X}_{2}
\end{array}\right], \boldsymbol{\mu}=\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right] \text {, and } \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right] .
$$

Then \mathbf{X}_{1} and \mathbf{X}_{2} are independent if and only if the covariance satisfies $\Sigma_{12}=\mathbf{0}$.

Proof (continued). If $\boldsymbol{\Sigma}_{12}=\mathbf{0}$, so that $\boldsymbol{\Sigma}_{21}=\boldsymbol{\Sigma}_{12}^{\prime}=\mathbf{0}^{\prime}$, then $M_{\mathbf{X}}(\mathbf{t})=M_{\mathbf{X}_{1}}\left(\mathbf{t}_{1}\right) M_{\mathbf{X}_{2}}\left(\mathbf{t}_{2}\right)$ and so by Note 2.6.C \mathbf{X}_{1} and \mathbf{X}_{2} are independent, as claimed. If \mathbf{X}_{1} and \mathbf{X}_{2} are independent, then by Note 2.6.C $M_{\mathbf{x}}(\mathbf{t})=M_{\mathbf{x}_{1}}\left(\mathbf{t}_{1}\right) M_{\mathbf{x}_{2}}\left(\mathbf{t}_{2}\right)$ and so $\mathbf{t}_{2}^{\prime} \boldsymbol{\Sigma}_{21} \mathbf{t}_{1}=0=\mathbf{t}_{1}^{\prime} \boldsymbol{\Sigma}_{12} \mathbf{t}_{2}$ for all
$\left[\begin{array}{l}\mathbf{X}_{1} \\ \mathbf{X}_{2}\end{array}\right] \in \mathbb{R}^{n}$. So we must have $\boldsymbol{\Sigma}_{12}=\mathbf{0}$ and $\boldsymbol{\Sigma}_{21}=\mathbf{0}^{\prime}$, as claimed.

Theorem 3.5.4

Theorem 3.5.4. Suppose \mathbf{X} has a $N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ distribution, partitioned as

$$
\mathbf{X}=\left[\begin{array}{l}
\mathbf{X}_{1} \\
\mathbf{X}_{2}
\end{array}\right], \boldsymbol{\mu}=\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right], \text { and } \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right] .
$$

Assume that $\boldsymbol{\Sigma}$ is positive definite. Then the conditional distribution of $\mathbf{X}_{1} \mid \mathbf{X}_{2}$ is

$$
N_{m}\left(\boldsymbol{\mu}_{1}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}\left(\mathbf{X}_{2}-\boldsymbol{\mu}_{2}\right), \boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}\right)
$$

Proof. Define random variable $\mathbf{W}=\mathbf{X}_{1}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \mathbf{X}_{2}$. Then

$$
\left[\begin{array}{l}
\mathrm{W} \\
\mathrm{X}_{2}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{I}_{m} & -\mathrm{\Sigma}_{12} \Sigma_{22}^{-1} \\
0 & \mathrm{I}_{p}
\end{array}\right]\left[\begin{array}{l}
\mathbf{X}_{1} \\
\mathbf{X}_{2}
\end{array}\right]
$$

Theorem 3.5.4

Theorem 3.5.4. Suppose \mathbf{X} has a $N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ distribution, partitioned as

$$
\mathbf{X}=\left[\begin{array}{l}
\mathbf{X}_{1} \\
\mathbf{X}_{2}
\end{array}\right], \boldsymbol{\mu}=\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right], \text { and } \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right] .
$$

Assume that $\boldsymbol{\Sigma}$ is positive definite. Then the conditional distribution of $\mathbf{X}_{1} \mid \mathbf{X}_{2}$ is

$$
N_{m}\left(\boldsymbol{\mu}_{1}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}\left(\mathbf{X}_{2}-\boldsymbol{\mu}_{2}\right), \boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}\right)
$$

Proof. Define random variable $\mathbf{W}=\mathbf{X}_{1}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \mathbf{X}_{2}$. Then

$$
\left[\begin{array}{l}
\mathbf{W} \\
\mathbf{X}_{2}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I}_{m} & -\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \\
\mathbf{0} & \mathbf{I}_{p}
\end{array}\right]\left[\begin{array}{l}
\mathbf{X}_{1} \\
\mathbf{X}_{2}
\end{array}\right] .
$$

Theorem 3.5.4 (continued 1)

Proof (continued). By Theorem 3.5.2 (with $\mathbf{A}=\left[\begin{array}{cc}\mathbf{I}_{m} & -\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \\ \mathbf{0} & \mathbf{I}_{p}\end{array}\right]$ and $\mathbf{b}=\mathbf{0}$) we have that $\left[\begin{array}{l}\mathbf{W} \\ \mathbf{X}_{2}\end{array}\right]$ has a multivariate normal distribution $N_{n}\left(\mathbf{A} \boldsymbol{\mu}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}\right)$ where

$$
\mathbf{A}^{\prime}=\left[\begin{array}{cc}
\mathbf{I}_{m} & \mathbf{0}^{\prime} \\
-\left(\boldsymbol{\Sigma}_{22}^{-1}\right)^{\prime} \boldsymbol{\Sigma}_{12}^{\prime} & \mathbf{I}_{p}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I}_{m} & \mathbf{0} \\
-\boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} & \mathbf{I}_{p}
\end{array}\right]
$$

since $\left(M^{-1}\right)^{\prime}=\left(M^{\prime}\right)^{-1}$ (see Theorem 3.3.7 in my online notes for Theory of Matrices [MATH 5090] on Section 3.3. Matrix Rank and the Inverse of a Full Rank Matrix). Since

$$
\mathbf{A} \mu=\left[\begin{array}{cc}
\mathbf{I}_{m} & -\boldsymbol{\Sigma}_{12} \Sigma_{22}^{-1} \\
0 & \mathbf{I}_{p}
\end{array}\right]\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]=\left[\begin{array}{c}
\mu_{1}-\Sigma_{12} \Sigma_{22}^{-1} \mu_{2} \\
\mu_{2}
\end{array}\right]
$$

then the means are $E[\mathbf{W}]=\mu_{1}-\Sigma_{12} \Sigma_{22}^{-1} \mu_{2}$ and $E\left[\mathbf{X}_{2}\right]=\mu_{2}$.

Theorem 3.5.4 (continued 1)

Proof (continued). By Theorem 3.5.2 (with $\mathbf{A}=\left[\begin{array}{cc}\mathbf{I}_{m} & -\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \\ \mathbf{0} & \mathbf{I}_{p}\end{array}\right]$ and $\mathbf{b}=\mathbf{0}$) we have that $\left[\begin{array}{l}\mathbf{W} \\ \mathbf{X}_{2}\end{array}\right]$ has a multivariate normal distribution $N_{n}\left(\mathbf{A} \boldsymbol{\mu}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}\right)$ where

$$
\mathbf{A}^{\prime}=\left[\begin{array}{cc}
\mathbf{I}_{m} & \mathbf{0}^{\prime} \\
-\left(\boldsymbol{\Sigma}_{22}^{-1}\right)^{\prime} \boldsymbol{\Sigma}_{12}^{\prime} & \mathbf{I}_{p}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I}_{m} & \mathbf{0} \\
-\boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} & \mathbf{I}_{p}
\end{array}\right]
$$

since $\left(M^{-1}\right)^{\prime}=\left(M^{\prime}\right)^{-1}$ (see Theorem 3.3.7 in my online notes for Theory of Matrices [MATH 5090] on Section 3.3. Matrix Rank and the Inverse of a Full Rank Matrix). Since

$$
\mathbf{A} \boldsymbol{\mu}=\left[\begin{array}{cc}
\mathbf{I}_{m} & -\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \\
\mathbf{0} & \mathbf{I}_{p}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{\mu}_{1}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\mu}_{2} \\
\boldsymbol{\mu}_{2}
\end{array}\right],
$$

then the means are $E[\mathbf{W}]=\boldsymbol{\mu}_{1}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\mu}_{2}$ and $E\left[\mathbf{X}_{2}\right]=\boldsymbol{\mu}_{2}$.

Theorem 3.5.4 (continued 2)

Proof (continued). The covariance matrix is

$$
\begin{gathered}
\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}=\left[\begin{array}{cc}
\mathbf{I}_{m} & -\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \\
\mathbf{0} & \mathbf{I}_{p}
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I}_{m} & \mathbf{0}^{\prime} \\
-\boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} & \mathbf{I}_{p}
\end{array}\right] \\
=\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} & \mathbf{0} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I}_{m} & \mathbf{0}^{\prime} \\
-\boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} & \mathbf{I}_{p}
\end{array}\right] \\
=\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} & \mathbf{0}^{\prime} \\
\mathbf{0} & \boldsymbol{\Sigma}_{22}
\end{array}\right]
\end{gathered}
$$

Since we have a matrix of all 0 's in the upper right, then by Theorem 3.5.3 the random vectors \mathbf{W} and \mathbf{X}_{2} are independent. By Note 2.4.1, if the joint probability density function of \mathbf{W} and \mathbf{X}_{2} is $f\left(\mathbf{w}, \mathbf{x}_{2}\right)$ then the conditional probability density functions are $f_{\mathbf{W} \mid \mathbf{X}_{2}}\left(\mathbf{w} \mid \mathbf{x}_{2}\right)=f\left(\mathbf{w}, \mathbf{x}_{2}\right) / f\left(\mathbf{x}_{2}\right)$ and $f_{\mathbf{X}_{2} \mid \mathbf{w}}\left(\mathbf{w} \mid \mathbf{x}_{2}\right)=f\left(\mathbf{w}, \mathbf{x}_{2}\right) / f_{1}(\mathbf{w})$ where the marginal distributions are $f_{1}(\mathbf{w})$ and $f_{2}\left(\mathbf{x}_{2}\right)$. By Definition 2.4.1, since \mathbf{W} and \mathbf{X}_{2} are independent, then $f_{\mathbf{X}_{2} \mid \mathbf{w}}\left(\mathbf{w} \mid \mathbf{x}_{2}\right)=f_{1}(\mathbf{w}) f_{2}\left(\mathbf{x}_{2}\right)$ (though Note 2.4.1 and Definition 2.4.1 deal with single random variables instead of random vectors).

Theorem 3.5.4 (continued 2)

Proof (continued). The covariance matrix is

$$
\begin{gathered}
\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}=\left[\begin{array}{cc}
\mathbf{I}_{m} & -\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \\
\mathbf{0} & \mathbf{I}_{p}
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I}_{m} & \mathbf{0}^{\prime} \\
-\boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} & \mathbf{I}_{p}
\end{array}\right] \\
=\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} & \mathbf{0} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I}_{m} & \mathbf{0}^{\prime} \\
-\boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} & \mathbf{I}_{p}
\end{array}\right] \\
=\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} & \mathbf{0}^{\prime} \\
\mathbf{0} & \boldsymbol{\Sigma}_{22}
\end{array}\right]
\end{gathered}
$$

Since we have a matrix of all 0's in the upper right, then by Theorem 3.5.3 the random vectors \mathbf{W} and \mathbf{X}_{2} are independent. By Note 2.4.1, if the joint probability density function of \mathbf{W} and \mathbf{X}_{2} is $f\left(\mathbf{w}, \mathbf{x}_{2}\right)$ then the conditional probability density functions are $f_{\mathbf{W} \mid \mathbf{X}_{2}}\left(\mathbf{w} \mid \mathbf{x}_{2}\right)=f\left(\mathbf{w}, \mathbf{x}_{2}\right) / f\left(\mathbf{x}_{2}\right)$ and $f_{\mathbf{X}_{2} \mid \mathbf{w}}\left(\mathbf{w} \mid \mathbf{x}_{2}\right)=f\left(\mathbf{w}, \mathbf{x}_{2}\right) / f_{1}(\mathbf{w})$ where the marginal distributions are $f_{1}(\mathbf{w})$ and $f_{2}\left(\mathbf{x}_{2}\right)$. By Definition 2.4.1, since \mathbf{W} and \mathbf{X}_{2} are independent, then $f_{\mathbf{X}_{2} \mid \mathbf{w}}\left(\mathbf{w} \mid \mathbf{x}_{2}\right)=f_{1}(\mathbf{w}) f_{2}\left(\mathbf{x}_{2}\right)$ (though Note 2.4.1 and Definition 2.4.1 deal with single random variables instead of random vectors).

Theorem 3.5.4 (continued 3)

Proof (continued). So the conditional probability density function of $\mathbf{W} \mid \mathbf{X}_{2}$ is equal to the marginal density function:

$$
f_{\mathbf{W} \mid \mathbf{x}_{2}}\left(\mathbf{x}_{2} \mid \mathbf{w}\right)=\frac{f\left(\mathbf{w}, \mathbf{x}_{2}\right)}{f_{2}\left(\mathbf{x}_{2}\right)}=\frac{f_{1}(\mathbf{w}) f_{2}\left(\mathbf{x}_{2}\right)}{f_{2}\left(\mathbf{x}_{2}\right)}=f_{1}(\mathbf{w}) .
$$

Since $E[\mathbf{W}]=\mu_{1}-\Sigma_{12} \Sigma_{22}^{-1} \mu_{2}$ and the variance of \mathbf{W} is $\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$, then the marginal distribution of \mathbf{W} (and also the conditional distribution of $\left.\mathbf{W} \mid \mathbf{X}_{2}\right)$ is $N_{m}\left(\mu_{1}-\Sigma_{12} \Sigma_{22}^{-1} \mu_{2}, \Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)$. Now $X_{1}=W+\Sigma_{12} \Sigma_{22}^{-1} X_{2}$ and so (again by the independence) the distribution of $\mathbf{X}_{1} \mid \mathbf{X}_{2}$ is $N_{m}\left(\mu_{1}-\Sigma_{12} \boldsymbol{\Sigma}_{22}^{-1} \mu_{2}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \mathbf{X}_{2}, \boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}\right)$, as claimed.

Theorem 3.5.4 (continued 3)

Proof (continued). So the conditional probability density function of $\mathbf{W} \mid \mathbf{X}_{2}$ is equal to the marginal density function:

$$
f_{\mathbf{W} \mid \mathbf{x}_{2}}\left(\mathbf{x}_{2} \mid \mathbf{w}\right)=\frac{f\left(\mathbf{w}, \mathbf{x}_{2}\right)}{f_{2}\left(\mathbf{x}_{2}\right)}=\frac{f_{1}(\mathbf{w}) f_{2}\left(\mathbf{x}_{2}\right)}{f_{2}\left(\mathbf{x}_{2}\right)}=f_{1}(\mathbf{w}) .
$$

Since $E[\mathbf{W}]=\boldsymbol{\mu}_{1}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\mu}_{2}$ and the variance of \mathbf{W} is $\boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}$, then the marginal distribution of \mathbf{W} (and also the conditional distribution of $\mathbf{W} \mid \mathbf{X}_{2}$) is $N_{m}\left(\boldsymbol{\mu}_{1}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}\right)$. Now $\mathbf{X}_{1}=\mathbf{W}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \mathbf{X}_{2}$ and so (again by the independence) the distribution of $\mathbf{X}_{1} \mid \mathbf{X}_{2}$ is $N_{m}\left(\mu_{1}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\mu}_{2}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \mathbf{X}_{2}, \boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}\right)$, as claimed.

Exercise 3.5.8

Exercise 3.5.8. Let X and Y have a bivariate normal distribution with parameters $\mu_{1}=20, \mu_{2}=40, \sigma_{1}^{2}=9, \sigma_{2}^{2}=4$, and $\rho=0.6$. Find the shortest interval for which 0.90 is the conditional probability that Y is in the interval, given that $x=22$.

Solution. As seen in Example 3.5.A, the conditional distribution of Y

 gives $X=22$ is$$
N\left(\mu_{2}+\left(\rho \sigma_{1} / \sigma_{2}\right)\left(x-\mu_{1}\right), \sigma_{2}^{2}\left(1-\rho^{2}\right)\right)
$$

$$
=N\left((40)+\left((0.6)(3) /(2)((22)-(20)),(4)\left(1-(0.6)^{2}\right)\right)=N(41.8,2.56) .\right.
$$

So the mean is 41.2 and the standard deviation is $\sqrt{1.56}=1.6$. To get a ("two-sided") interval centered at 41.8 that contains 0.90 of the distribution, we take the Z-value of $Z=1.645$ and the interval is

$$
((41.8)-(1.645)(1.6),(41.8)+(1.645)(1.6))=(39.168,44.432) .
$$

Exercise 3.5.8

Exercise 3.5.8. Let X and Y have a bivariate normal distribution with parameters $\mu_{1}=20, \mu_{2}=40, \sigma_{1}^{2}=9, \sigma_{2}^{2}=4$, and $\rho=0.6$. Find the shortest interval for which 0.90 is the conditional probability that Y is in the interval, given that $x=22$.

Solution. As seen in Example 3.5.A, the conditional distribution of Y gives $X=22$ is

$$
\begin{gathered}
N\left(\mu_{2}+\left(\rho \sigma_{1} / \sigma_{2}\right)\left(x-\mu_{1}\right), \sigma_{2}^{2}\left(1-\rho^{2}\right)\right) \\
=N\left((40)+\left((0.6)(3) /(2)((22)-(20)),(4)\left(1-(0.6)^{2}\right)\right)=N(41.8,2.56) .\right.
\end{gathered}
$$

So the mean is 41.2 and the standard deviation is $\sqrt{1.56}=1.6$. To get a ("two-sided") interval centered at 41.8 that contains 0.90 of the distribution, we take the Z-value of $Z=1.645$ and the interval is

$$
((41.8)-(1.645)(1.6),(41.8)+(1.645)(1.6))=(39.168,44.432) .
$$

Lemma 3.5.B

Lemma 3.5.B. Consider random vector \mathbf{X} with multivariate normal distribution $N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\mathbf{Y}=\boldsymbol{\Gamma}(\mathbf{X}-\boldsymbol{\mu})$ where $\boldsymbol{\Gamma}$ is an orthogonal positive definite matrix. Then for any $\mathbf{a} \in \mathbb{R}^{n}$ with $\|\mathbf{a}\|=1$, we have $\operatorname{Var}\left(\mathbf{a}^{\prime} \mathbf{X}\right) \leq \operatorname{Var}\left(Y_{1}\right)$. That is, Y_{1} has the maximum variance of any linear combination $\mathbf{a}^{\prime}(\mathbf{X}-\boldsymbol{\mu})$ where $\|\mathbf{a}\|=\left\|\mathbf{a}^{\prime}\right\|=1$.

Proof. The first component of \mathbf{Y} is given by $Y_{1}=\mathbf{v}_{1}^{\prime}(\mathbf{X}-\boldsymbol{\mu})$ where \mathbf{v}_{1} is the first column of Γ^{\prime} (and hence the first row of $\boldsymbol{\Gamma}$); since $\boldsymbol{\Gamma}$ and $\boldsymbol{\Gamma}^{\prime}$ are orthogonal, then $\left\|\mathrm{v}_{1}\right\|^{2}=\sum_{j=1}^{n} \vee 1 j^{2}=1$. For $\mathrm{a} \in \mathbb{R}^{n}$ with $\|\mathrm{a}\|=1$, we have $\mathbf{a}=\sum_{j=1}^{n} a_{j} \mathbf{v}_{j}$ where \mathbf{v}_{j} is the j th column of Γ^{\prime} (since Γ^{\prime} is orthogonal and so its columns for an orthonormal set of n vectors in \mathbb{R}^{n}; i.e., $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is an orthonormal basis of $\left.\mathbb{R}^{n}\right)$.

Lemma 3.5.B

Lemma 3.5.B. Consider random vector \mathbf{X} with multivariate normal distribution $N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\mathbf{Y}=\boldsymbol{\Gamma}(\mathbf{X}-\boldsymbol{\mu})$ where $\boldsymbol{\Gamma}$ is an orthogonal positive definite matrix. Then for any $\mathbf{a} \in \mathbb{R}^{n}$ with $\|\mathbf{a}\|=1$, we have $\operatorname{Var}\left(\mathbf{a}^{\prime} \mathbf{X}\right) \leq \operatorname{Var}\left(Y_{1}\right)$. That is, Y_{1} has the maximum variance of any linear combination $\mathbf{a}^{\prime}(\mathbf{X}-\boldsymbol{\mu})$ where $\|\mathbf{a}\|=\left\|\mathbf{a}^{\prime}\right\|=1$.

Proof. The first component of \mathbf{Y} is given by $Y_{1}=\mathbf{v}_{1}^{\prime}(\mathbf{X}-\boldsymbol{\mu})$ where \mathbf{v}_{1} is the first column of $\boldsymbol{\Gamma}^{\prime}$ (and hence the first row of $\boldsymbol{\Gamma}$); since $\boldsymbol{\Gamma}$ and $\boldsymbol{\Gamma}^{\prime}$ are orthogonal, then $\left\|\mathbf{v}_{1}\right\|^{2}=\sum_{j=1}^{n} v 1 j^{2}=1$. For $\mathbf{a} \in \mathbb{R}^{n}$ with $\|\mathbf{a}\|=1$, we have $\mathbf{a}=\sum_{j=1}^{n} a_{j} \mathbf{v}_{j}$ where \mathbf{v}_{j} is the j th column of $\boldsymbol{\Gamma}^{\prime}$ (since $\boldsymbol{\Gamma}^{\prime}$ is orthogonal and so its columns for an orthonormal set of n vectors in \mathbb{R}^{n}; i.e., $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is an orthonormal basis of $\left.\mathbb{R}^{n}\right)$.

Lemma 3.5.B (continued 1)

Proof (continued). Since $\boldsymbol{\Sigma}=\boldsymbol{\Gamma}^{\prime} \boldsymbol{\Lambda} \boldsymbol{\Gamma}=\sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{\prime}$ (see Note 3.5.D and Exercise 3.5.19) then

$$
\begin{aligned}
\operatorname{Var}\left(\mathbf{a}^{\prime} \mathbf{X}\right) & =\mathbf{a}^{\prime} \boldsymbol{\Sigma} \mathbf{a} \text { by Theorem } 3.5 .2 \\
& =\mathbf{a}^{\prime} \boldsymbol{\Gamma}^{\prime} \boldsymbol{\Lambda} \boldsymbol{\Gamma} \mathbf{a} \text { since } \boldsymbol{\Sigma}=\boldsymbol{\Gamma}^{\prime} \boldsymbol{\Lambda} \boldsymbol{\Gamma} \\
& =\left(\sum_{i=1}^{n} a_{i} \mathbf{v}_{i}\right) \boldsymbol{\Lambda}\left(\sum_{j=1}^{n} a_{j} \mathbf{v}_{j}^{\prime}\right) \text { since } \mathbf{a}^{\prime} \boldsymbol{\Gamma}^{\prime} \text { is a linear }
\end{aligned}
$$

combination of the columns of Γ^{\prime} with scalars a_{i}, and $\boldsymbol{\Gamma}$ a is a linear combination of the rows of $\boldsymbol{\Gamma}$ with scalars a_{i} (notice that the rows of $\boldsymbol{\Gamma}$ are the columns of Γ^{\prime} transposed)
$=\left(\sum_{i=1}^{n} \lambda_{i} a_{i} \mathbf{v}_{i}\right)\left(\sum_{j=1}^{n} a_{j} \mathbf{v}_{j}^{\prime}\right)$ since $\boldsymbol{\Lambda}$ is a diagonal matrix \ldots

Lemma 3.5.B (continued 2)

Proof (continued)

$$
\begin{aligned}
\operatorname{Var}\left(\mathbf{a}^{\prime} \mathbf{X}\right) & =\left(\sum_{i=1}^{n} \lambda_{i} a_{i} \mathbf{v}_{i}\right)\left(\sum_{j=1}^{n} a_{j} \mathbf{v}_{j}^{\prime}\right) \text { since } \boldsymbol{\Lambda} \text { is a diagonal matrix } \\
& =\sum_{i=1}^{n} \lambda_{i} \sum_{j=1}^{n} a_{i} a_{j} \mathbf{v}_{i} \mathbf{v}_{j}^{\prime}=\sum_{i=1}^{n} \lambda_{i} \sum_{j=1}^{n} a_{i} a_{j}\left(\mathbf{v}_{i} \cdot \mathbf{v}_{j}\right) \\
& =\sum_{i=1}^{n} \lambda_{i} a_{i}^{2} \text { since }\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\} \text { is an orthonormal set } \\
& \leq \lambda_{1} \sum_{i=1}^{n} a_{i}^{2} \text { since } \lambda_{1} \text { is the greatest eigenvalue } \\
& =\lambda_{1} \text { since } \sum_{i=1}^{n} a_{i}^{2}=\|\mathbf{a}\|^{1}=1 \\
& =\operatorname{Var}\left(Y_{1}\right)
\end{aligned}
$$

Lemma 3.5.B (continued 3)

Lemma 3.5.B. Consider random vector \mathbf{X} with multivariate normal distribution $N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\mathbf{Y}=\boldsymbol{\Gamma}(\mathbf{X}-\boldsymbol{\mu})$ where $\boldsymbol{\Gamma}$ is an orthogonal positive definite matrix. Then for any $\mathbf{a} \in \mathbb{R}^{n}$ with $\|\mathbf{a}\|=1$, we have $\operatorname{Var}\left(\mathbf{a}^{\prime} \mathbf{X}\right) \leq \operatorname{Var}\left(Y_{1}\right)$. That is, Y_{1} has the maximum variance of any linear combination $\mathbf{a}^{\prime}(\mathbf{X}-\boldsymbol{\mu})$ where $\|\mathbf{a}\|=\left\|\mathbf{a}^{\prime}\right\|=1$.

Proof (continued). ... $\operatorname{Var}\left(\mathbf{a}^{\prime} \mathbf{X}\right) \leq \operatorname{Var}\left(Y_{1}\right)$. So $\operatorname{Var}\left(Y_{1}\right) \geq \operatorname{Var}\left(\mathbf{a}^{\prime} \mathbf{X}\right)$ and hence Y_{1} has the maximum variance of any linear combination $\mathbf{a}^{\prime}(\mathbf{X}-\boldsymbol{\mu})$ where $\left\|\mathbf{a}^{\prime}\right\|=1$, as claimed.

