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Chapter 3. Some Special Distributions
3.5. The Multivariate Normal Distribution—Proofs of Theorems
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Lemma 3.5.A

Lemma 3.5.A

Lemma 3.5.A. Let random vector (X ,Y ) have the bivariate normal
distribution. Then X and Y are independent if and only if they are
uncorrelated (that is, ρ = 0).

Proof. The joint moment generating function of (X ,Y ) is (by Note 3.5.B)

M(X ,Y )(t1, t2) = exp

(
t1µ1 + t2µ2 +

1

2
(t2

1σ2
1 + 2t1t2ρσ1σ2 + t2

2σ2
2)

)
.

If ρ = 0 then the joint moment generating function becomes

M(X ,Y )(t1, t2) = exp
(
t1µ1 + t2µ2 + t2

1σ2
1/2 + t2

2σ2
2/2
)

= exp
(
t1µ1 + t2

1σ2
2/2
)
exp

(
t2µ2 + t2σ

2
2/2
)

= M(X ,Y )(t1, 0)M(X ,Y )(0, t2).

So by Theorem 2.4.5, X and Y are independent.

Conversely, Suppose X and Y are independent. The by Theorem 2.4.5,
M(X ,Y )(t1, t2) = M(X ,Y )(t1, 0)M(X ,Y )(0, t2) and so the form of the joint
moment generating function M(X ,Y )(t1, t2) given above, we must have
ρ = 0, as claimed.
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Theorem 3.5.1

Theorem 3.5.1

Theorem 3.5.1. Suppose X has a Nn(µ,Σ) distribution, where Σ is
positive definite. Then the random variable Y = (X− µ)′Σ(X− µ) has a
χ2(n) distribution.

Proof. Since X = Σ1/2Z + µ then

Y = (X− µ)′Σ−1(X− µ) = (Σ1/2Z)′Σ−1(Σ1/2Z)

= Z′Σ1/2Σ−1Σ1/2Z since Σ1/2 is symmetric

= Z′Z =
n∑

i=1

Z 2
i .

Now Z 2
i has a χ2 distribution by Theorem 2.4.1. So by Corollary 3.3.1,

Y =
∑n

i=1 Z 2
i has a χ2(n) distribution, as claimed.
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Theorem 3.5.2

Theorem 3.5.2

Theorem 3.5.2. Suppose X has a Nn(µ,Σ) distribution. Let
Y = AX + b, where A is an m × n matrix and b ∈ Rm. Then Y has a
Nm(Aµ + b,AΣA′) distribution.

Proof. The moment generating function of Y is

MY(t) = E [exp(t′Y)] = E [exp(t′((A)X + b))]

= E [exp(t′AX + t′b)] = E [exp(t′b) exp(t′AX)]

= exp(t′b)E [exp(t′AX)] = exp(t′b)E [exp((A′t)′X)]

= exp(t′b) exp

(
(A′t)′µ +

1

2
(A′t)′Σ(A′t)

)
by Definition 3.5.1

= exp

(
(t′b) + t′Aµ +

1

2
t′AΣA′t

)
= exp

(
t′(Aµ + b) +

1

2
t′AΣA′t

)
. . .
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Theorem 3.5.2

Theorem 3.5.2 (continued)

Theorem 3.5.2. Suppose X has a Nn(µ,Σ) distribution. Let
Y = AX + b, where A is an m × n matrix and b ∈ Rm. Then Y has a
Nm(Aµ + b,AΣA′) distribution.

Proof. . . .

MY(t) = exp

(
t′(Aµ + b) +

1

2
t′AΣA′t

)
,

which is the moment generating function of an Nm(Aµ + b,AΣA′)
distribution, as claimed.
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Corollary 3.5.1

Corollary 3.5.1

Corollary 3.5.1. Suppose X has a Nn(µ,Σ) distribution partitioned as

X =

[
X1

X2

]
,µ =

[
µ1

µ2

]
, and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
where X1 and µ1 are m dimensional and Σ11 is m ×m. Then X1 has a
Nm(µ1,Σ11) distribution.

Proof. Define m × (m + p) matrix A = [Im 0mp] where 0mp is an m × p
matrix of zeros. Then X1 = AX (notice that A is m × (m + p) and X is
(m + p)× 1 so X1 = m × 1). So with b = 0, we have by Theorem 3.5.2
that X1 has a Nm(Aµ,AΣA′) distribution. Now Aµ = µ1 and writing
AΣA′ in terms of partitioned matrices gives

AΣA′ = [Im 0mp]

[
Σ11 Σ12

Σ21 Σ22

]
=

[
Im
0mp

]
= Σ11

(notice that Σ11 is a matrix itself so we do not write [Σ11]).
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Corollary 3.5.1

Corollary 3.5.1 (continued)

Corollary 3.5.1. Suppose X has a Nn(µ,Σ) distribution partitioned as

X =

[
X1

X2

]
,µ =

[
µ1

µ2

]
, and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
where X1 and µ1 are m dimensional and Σ11 is m ×m. Then X1 has a
Nm(µ1,Σ11) distribution.

Proof. So Aµ = µ1 and AΣA′ = Σ11. Hence X1 has a
Nm(Aµ,AΣA′) = Nm(µ1,Σ11) distribution, as claimed.
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Theorem 3.5.3

Theorem 3.5.3

Theorem 3.5.3. Suppose X has a Nn(µ,Σ) distribution, partitioned as

X =

[
X1

X2

]
,µ =

[
µ1

µ2

]
, and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Then X1 and X2 are independent if and only if the covariance satisfies
Σ12 = 0.

Proof. Since cov(Xi ,Xj) = cov(Xj ,Xi ) then Σ21 = Σ′
12. By Definition

3.5.1, the moment generating function of X is

MX(t) = exp(t′µ + (1/2)t′Σt) for Rn.

Since t′ = [t′1 t′2] and µ =

[
µ1

µ2

]
then t′µ = t′1µ1 + t′2µ2.
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Theorem 3.5.3

Theorem 3.5.3 (continued 1)

Proof (continued). Also,

t′Σt = [t′1 t′2]

[
Σ11 Σ12

Σ21 Σ22

] [
µ1

µ2

]
= [t′1Σ11 + t2Σ21 t′1Σ12 + t′2Σ22]

[
µ1

µ2

]
= t′1Σ11t1 + t2Σ21t1 + t′1Σ12t2 + t′2Σ22t2.

By Corollary 3.5.1, X1 has a Nm(µ1,Σ11) distribution and (similarly) X2

has a Np(µ2,Σ22) distribution. So by Definition 3.5.1, the marginal
distribution functions are MX1(t1) = exp(t′1µ1 + (1/2)t′1Σ11t1) and
MX2(t2) = exp(t′2µ2 + (1/2)t′2Σ22t2) for [t′1 t′2] ∈ Rn. By Note 2.6.C
(and its observation that Theorem 2.4.5 can be extended to several
random variables) we have that X1 and X2 are independent if and only if
MX(t) = MX1(t1)MX2(t2).
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Theorem 3.5.3

Theorem 3.5.3 (continued 2)

Theorem 3.5.3. Suppose X has a Nn(µ,Σ) distribution, partitioned as

X =

[
X1

X2

]
,µ =

[
µ1

µ2

]
, and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Then X1 and X2 are independent if and only if the covariance satisfies
Σ12 = 0.

Proof (continued). If Σ12 = 0, so that Σ21 = Σ′
12 = 0′, then

MX(t) = MX1(t1)MX2(t2) and so by Note 2.6.C X1 and X2 are
independent, as claimed. If X1 and X2 are independent, then by Note
2.6.C MX(t) = MX1(t1)MX2(t2) and so t′2Σ21t1 = 0 = t′1Σ12t2 for all[

X1

X2

]
∈ Rn. So we must have Σ12 = 0 and Σ21 = 0′, as claimed.
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Theorem 3.5.4

Theorem 3.5.4

Theorem 3.5.4. Suppose X has a Nn(µ,Σ) distribution, partitioned as

X =

[
X1

X2

]
,µ =

[
µ1

µ2

]
, and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Assume that Σ is positive definite. Then the conditional distribution of
X1 | X2 is

Nm(µ1 + Σ12Σ−1
22 (X2 − µ2),Σ11 −Σ12Σ−1

22 Σ21).

Proof. Define random variable W = X1 −Σ12Σ−1
22 X2. Then[

W
X2

]
=

[
Im −Σ12Σ−1

22

0 Ip

] [
X1

X2

]
.
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Theorem 3.5.4

Theorem 3.5.4 (continued 1)

Proof (continued). By Theorem 3.5.2 (with A =

[
Im −Σ12Σ−1

22

0 Ip

]
and b = 0) we have that

[
W
X2

]
has a multivariate normal distribution

Nn(Aµ,AΣA′) where

A′ =

[
Im 0′

−(Σ−1
22 )′Σ′

12 Ip

]
=

[
Im 0

−Σ−1
22 Σ21 Ip

]
since (M−1)′ = (M ′)−1 (see Theorem 3.3.7 in my online notes for Theory
of Matrices [MATH 5090] on Section 3.3. Matrix Rank and the Inverse of
a Full Rank Matrix). Since

Aµ =

[
Im −Σ12Σ−1

22

0 Ip

] [
µ1

µ2

]
=

[
µ1 −Σ12Σ−1

22 µ2

µ2

]
,

then the means are E [W] = µ1 −Σ12Σ−1
22 µ2 and E [X2] = µ2.
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Theorem 3.5.4

Theorem 3.5.4 (continued 2)

Proof (continued). The covariance matrix is

AΣA′ =

[
Im −Σ12Σ−1

22

0 Ip

] [
Σ11 Σ12

Σ21 Σ22

] [
Im 0′

−Σ−1
22 Σ21 Ip

]
=

[
Σ11 −Σ12Σ−1

22 Σ21 0
Σ21 Σ22

] [
Im 0′

−Σ−1
22 Σ21 Ip

]
=

[
Σ11 −Σ12Σ−1

22 Σ21 0′

0 Σ22

]
.

Since we have a matrix of all 0’s in the upper right, then by Theorem 3.5.3
the random vectors W and X2 are independent. By Note 2.4.1, if the joint
probability density function of W and X2 is f (w, x2) then the conditional
probability density functions are fW|X2

(w | x2) = f (w, x2)/f (x2) and
fX2|W(w | x2) = f (w, x2)/f1(w) where the marginal distributions are f1(w)
and f2(x2). By Definition 2.4.1, since W and X2 are independent, then
fX2|W(w | x2) = f1(w)f2(x2) (though Note 2.4.1 and Definition 2.4.1 deal
with single random variables instead of random vectors).
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with single random variables instead of random vectors).
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Theorem 3.5.4

Theorem 3.5.4 (continued 3)

Proof (continued). So the conditional probability density function of
W | X2 is equal to the marginal density function:

fW|X2
(x2 | w) =

f (w, x2)

f2(x2)
=

f1(w)f2(x2)

f2(x2)
= f1(w).

Since E [W] = µ1 −Σ12Σ−1
22 µ2 and the variance of W is

Σ11 −Σ12Σ−1
22 Σ21, then the marginal distribution of W (and also the

conditional distribution of W | X2) is
Nm(µ1 −Σ12Σ−1

22 µ2,Σ11 −Σ12Σ−1
22 Σ21). Now X1 = W + Σ12Σ−1

22 X2

and so (again by the independence) the distribution of X1 | X2 is
Nm(µ1 −Σ12Σ−1

22 µ2 + Σ12Σ−1
22 X2,Σ11 −Σ12Σ−1

22 Σ21), as claimed.
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Exercise 3.5.8

Exercise 3.5.8

Exercise 3.5.8. Let X and Y have a bivariate normal distribution with
parameters µ1 = 20, µ2 = 40, σ2

1 = 9, σ2
2 = 4, and ρ = 0.6. Find the

shortest interval for which 0.90 is the conditional probability that Y is in
the interval, given that x = 22.

Solution. As seen in Example 3.5.A, the conditional distribution of Y
gives X = 22 is

N(µ2 + (ρσ1/σ2)(x − µ1), σ
2
2(1− ρ2))

= N((40) + ((0.6)(3)/(2)((22)− (20)), (4)(1− (0.6)2)) = N(41.8, 2.56).

So the mean is 41.2 and the standard deviation is
√

1.56 = 1.6. To get a
(“two-sided”) interval centered at 41.8 that contains 0.90 of the
distribution, we take the Z -value of Z = 1.645 and the interval is

((41.8)− (1.645)(1.6), (41.8) + (1.645)(1.6)) = (39.168, 44.432). �
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Lemma 3.5.B

Lemma 3.5.B

Lemma 3.5.B. Consider random vector X with multivariate normal
distribution Nn(µ,Σ) and Y = Γ(X− µ) where Γ is an orthogonal
positive definite matrix. Then for any a ∈ Rn with ‖a‖ = 1, we have
Var(a′X) ≤ Var(Y1). That is, Y1 has the maximum variance of any linear
combination a′(X− µ) where ‖a‖ = ‖a′‖ = 1.

Proof. The first component of Y is given by Y1 = v′1(X− µ) where v1 is
the first column of Γ′ (and hence the first row of Γ); since Γ and Γ′ are
orthogonal, then ‖v1‖2 =

∑n
j=1 v1j2 = 1. For a ∈ Rn with ‖a‖ = 1, we

have a =
∑n

j=1 ajvj where vj is the jth column of Γ′ (since Γ′ is
orthogonal and so its columns for an orthonormal set of n vectors in Rn;
i.e., {v1, v2, . . . , vn} is an orthonormal basis of Rn).
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Lemma 3.5.B

Lemma 3.5.B (continued 1)

Proof (continued). Since Σ = Γ′ΛΓ =
∑n

i=1 λiviv
′
i (see Note 3.5.D and

Exercise 3.5.19) then

Var(a′X) = a′Σa by Theorem 3.5.2

= a′Γ′ΛΓa since Σ = Γ′ΛΓ

=

(
n∑

i=1

aivi

)
Λ

 n∑
j=1

ajv
′
j

 since a′Γ′ is a linear

combination of the columns of Γ′ with scalars ai ,

and Γa is a linear combination of the rows of Γ

with scalars ai (notice that the rows of Γ are the

columns of Γ′ transposed)

=

(
n∑

i=1

λiaivi

) n∑
j=1

ajv
′
j

 since Λ is a diagonal matrix . . .
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Lemma 3.5.B

Lemma 3.5.B (continued 2)

Proof (continued). . . .

Var(a′X) =

(
n∑

i=1

λiaivi

) n∑
j=1

ajv
′
j

 since Λ is a diagonal matrix

=
n∑

i=1

λi

n∑
j=1

aiajviv
′
j =

n∑
i=1

λi

n∑
j=1

aiaj(vi · vj)

=
n∑

i=1

λia
2
i since {v1, v2, . . . , vn} is an orthonormal set

≤ λ1

n∑
i=1

a2
i since λ1 is the greatest eigenvalue

= λ1 since
n∑

i=1

a2
i = ‖a‖1 = 1

= Var(Y1).
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Lemma 3.5.B

Lemma 3.5.B (continued 3)

Lemma 3.5.B. Consider random vector X with multivariate normal
distribution Nn(µ,Σ) and Y = Γ(X− µ) where Γ is an orthogonal
positive definite matrix. Then for any a ∈ Rn with ‖a‖ = 1, we have
Var(a′X) ≤ Var(Y1). That is, Y1 has the maximum variance of any linear
combination a′(X− µ) where ‖a‖ = ‖a′‖ = 1.

Proof (continued). . . . Var(a′X) ≤ Var(Y1). So Var(Y1) ≥ Var(a′X) and
hence Y1 has the maximum variance of any linear combination a′(X− µ)
where ‖a′‖ = 1, as claimed.
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