Mathematical Statistics 1

Chapter 3. Some Special Distributions

3.5. The Multivariate Normal Distribution—Proofs of Theorems

Table of contents

- 1 Lemma 3.5.A
- 2 Theorem 3.5.1
- 3 Theorem 3.5.2
- 4 Corollary 3.5.1
- 5 Theorem 3.5.3
- 6 Theorem 3.5.4
- Exercise 3.5.8

8 Lemma 3.5.B

Lemma 3.5.A. Let random vector (X, Y) have the bivariate normal distribution. Then X and Y are independent if and only if they are uncorrelated (that is, $\rho = 0$).

Proof. The joint moment generating function of (X, Y) is (by Note 3.5.B)

$$M_{(X,Y)}(t_1,t_2) = \exp\left(t_1\mu_1 + t_2\mu_2 + \frac{1}{2}(t_1^2\sigma_1^2 + 2t_1t_2\rho\sigma_1\sigma_2 + t_2^2\sigma_2^2)\right).$$

Lemma 3.5.A. Let random vector (X, Y) have the bivariate normal distribution. Then X and Y are independent if and only if they are uncorrelated (that is, $\rho = 0$).

Proof. The joint moment generating function of (X, Y) is (by Note 3.5.B)

$$M_{(X,Y)}(t_1,t_2) = \exp\left(t_1\mu_1 + t_2\mu_2 + \frac{1}{2}(t_1^2\sigma_1^2 + 2t_1t_2\rho\sigma_1\sigma_2 + t_2^2\sigma_2^2)\right).$$

If $\rho = 0$ then the joint moment generating function becomes

$$M_{(X,Y)}(t_1,t_2) = \exp\left(t_1\mu_1 + t_2\mu_2 + t_1^2\sigma_1^2/2 + t_2^2\sigma_2^2/2\right)$$

 $= \exp(t_1\mu_1 + t_1^2\sigma_2^2/2) \exp(t_2\mu_2 + t_2\sigma_2^2/2) = M_{(X,Y)}(t_1,0)M_{(X,Y)}(0,t_2).$ So by Theorem 2.4.5, X and Y are independent.

Lemma 3.5.A. Let random vector (X, Y) have the bivariate normal distribution. Then X and Y are independent if and only if they are uncorrelated (that is, $\rho = 0$).

Proof. The joint moment generating function of (X, Y) is (by Note 3.5.B)

$$M_{(X,Y)}(t_1,t_2) = \exp\left(t_1\mu_1 + t_2\mu_2 + \frac{1}{2}(t_1^2\sigma_1^2 + 2t_1t_2\rho\sigma_1\sigma_2 + t_2^2\sigma_2^2)\right).$$

If $\rho=0$ then the joint moment generating function becomes

$$M_{(X,Y)}(t_1,t_2) = \exp\left(t_1\mu_1 + t_2\mu_2 + t_1^2\sigma_1^2/2 + t_2^2\sigma_2^2/2\right)$$

 $= \exp(t_1\mu_1 + t_1^2\sigma_2^2/2) \exp(t_2\mu_2 + t_2\sigma_2^2/2) = M_{(X,Y)}(t_1,0)M_{(X,Y)}(0,t_2).$ So by Theorem 2.4.5, X and Y are independent.

Conversely, Suppose X and Y are independent. The by Theorem 2.4.5, $M_{(X,Y)}(t_1, t_2) = M_{(X,Y)}(t_1, 0)M_{(X,Y)}(0, t_2)$ and so the form of the joint moment generating function $M_{(X,Y)}(t_1, t_2)$ given above, we must have $\rho = 0$, as claimed.

()

Lemma 3.5.A. Let random vector (X, Y) have the bivariate normal distribution. Then X and Y are independent if and only if they are uncorrelated (that is, $\rho = 0$).

Proof. The joint moment generating function of (X, Y) is (by Note 3.5.B)

$$M_{(X,Y)}(t_1,t_2) = \exp\left(t_1\mu_1 + t_2\mu_2 + \frac{1}{2}(t_1^2\sigma_1^2 + 2t_1t_2\rho\sigma_1\sigma_2 + t_2^2\sigma_2^2)\right).$$

If $\rho={\rm 0}$ then the joint moment generating function becomes

$$M_{(X,Y)}(t_1,t_2) = \exp\left(t_1\mu_1 + t_2\mu_2 + t_1^2\sigma_1^2/2 + t_2^2\sigma_2^2/2\right)$$

 $= \exp(t_1\mu_1 + t_1^2\sigma_2^2/2) \exp(t_2\mu_2 + t_2\sigma_2^2/2) = M_{(X,Y)}(t_1,0)M_{(X,Y)}(0,t_2).$ So by Theorem 2.4.5, X and Y are independent.

Conversely, Suppose X and Y are independent. The by Theorem 2.4.5, $M_{(X,Y)}(t_1, t_2) = M_{(X,Y)}(t_1, 0)M_{(X,Y)}(0, t_2)$ and so the form of the joint moment generating function $M_{(X,Y)}(t_1, t_2)$ given above, we must have $\rho = 0$, as claimed.

Theorem 3.5.1. Suppose **X** has a $N_n(\mu, \Sigma)$ distribution, where **\Sigma** is positive definite. Then the random variable $Y = (\mathbf{X} - \mu)' \mathbf{\Sigma} (\mathbf{X} - \mu)$ has a $\chi^2(n)$ distribution.

Proof. Since $\mathbf{X} = \mathbf{\Sigma}^{1/2} \mathbf{Z} + \boldsymbol{\mu}$ then

$$Y = (\mathbf{X} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu}) = (\boldsymbol{\Sigma}^{1/2} \mathbf{Z})' \boldsymbol{\Sigma}^{-1} (\boldsymbol{\Sigma}^{1/2} \mathbf{Z})$$

= $\mathbf{Z}' \boldsymbol{\Sigma}^{1/2} \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}^{1/2} \mathbf{Z}$ since $\boldsymbol{\Sigma}^{1/2}$ is symmetric
= $\mathbf{Z}' \mathbf{Z} = \sum_{i=1}^{n} Z_i^2$.

Now Z_i^2 has a χ^2 distribution by Theorem 2.4.1. So by Corollary 3.3.1, $Y = \sum_{i=1}^{n} Z_i^2$ has a $\chi^2(n)$ distribution, as claimed.

Theorem 3.5.1. Suppose **X** has a $N_n(\mu, \Sigma)$ distribution, where **\Sigma** is positive definite. Then the random variable $Y = (\mathbf{X} - \mu)' \mathbf{\Sigma} (\mathbf{X} - \mu)$ has a $\chi^2(n)$ distribution.

Proof. Since $\mathbf{X} = \mathbf{\Sigma}^{1/2}\mathbf{Z} + \boldsymbol{\mu}$ then

$$Y = (\mathbf{X} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu}) = (\boldsymbol{\Sigma}^{1/2} \mathbf{Z})' \boldsymbol{\Sigma}^{-1} (\boldsymbol{\Sigma}^{1/2} \mathbf{Z})$$

= $\mathbf{Z}' \boldsymbol{\Sigma}^{1/2} \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}^{1/2} \mathbf{Z}$ since $\boldsymbol{\Sigma}^{1/2}$ is symmetric
= $\mathbf{Z}' \mathbf{Z} = \sum_{i=1}^{n} Z_i^2$.

Now Z_i^2 has a χ^2 distribution by Theorem 2.4.1. So by Corollary 3.3.1, $Y = \sum_{i=1}^{n} Z_i^2$ has a $\chi^2(n)$ distribution, as claimed.

Theorem 3.5.2. Suppose **X** has a $N_n(\mu, \Sigma)$ distribution. Let $\mathbf{Y} = \mathbf{AX} + \mathbf{b}$, where **A** is an $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^m$. Then **Y** has a $N_m(\mathbf{A}\mu + \mathbf{b}, \mathbf{A}\Sigma\mathbf{A}')$ distribution.

Proof. The moment generating function of **Y** is

 $M_{\mathbf{Y}}(\mathbf{t}) = E[\exp(\mathbf{t}'\mathbf{Y})] = E[\exp(\mathbf{t}'((A)\mathbf{X} + \mathbf{b}))]$ $= E[\exp(\mathbf{t}'\mathbf{A}\mathbf{X} + \mathbf{t}'\mathbf{b})] = E[\exp(\mathbf{t}'\mathbf{b})\exp(\mathbf{t}'\mathbf{A}\mathbf{X})]$ $= \exp(\mathbf{t}'\mathbf{b})E[\exp(\mathbf{t}'\mathbf{A}\mathbf{X})] = \exp(\mathbf{t}'\mathbf{b})E[\exp((\mathbf{A}'\mathbf{t})'\mathbf{X})]$ = $\exp(\mathbf{t'b}) \exp\left((\mathbf{A't})'\mu + \frac{1}{2}(\mathbf{A't})'\Sigma(\mathbf{A't})\right)$ by Definition 3.5.1 $= \exp\left((\mathbf{t'b}) + \mathbf{t'A}\mu + \frac{1}{2}\mathbf{t'A}\Sigma\mathbf{A't}\right)$ $= \exp\left(\mathbf{t}'(\mathbf{A}\boldsymbol{\mu}+\mathbf{b})+\frac{1}{2}\mathbf{t}'\mathbf{A}\boldsymbol{\Sigma}\mathbf{A}'\mathbf{t}\right)\dots$

Theorem 3.5.2. Suppose **X** has a $N_n(\mu, \Sigma)$ distribution. Let $\mathbf{Y} = \mathbf{AX} + \mathbf{b}$, where **A** is an $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^m$. Then **Y** has a $N_m(\mathbf{A}\mu + \mathbf{b}, \mathbf{A}\Sigma\mathbf{A}')$ distribution.

Proof. The moment generating function of **Y** is

$$M_{\mathbf{Y}}(\mathbf{t}) = E[\exp(\mathbf{t}'\mathbf{Y})] = E[\exp(\mathbf{t}'((A)\mathbf{X} + \mathbf{b}))]$$

= $E[\exp(\mathbf{t}'\mathbf{A}\mathbf{X} + \mathbf{t}'\mathbf{b})] = E[\exp(\mathbf{t}'\mathbf{b})\exp(\mathbf{t}'\mathbf{A}\mathbf{X})]$
= $\exp(\mathbf{t}'\mathbf{b})E[\exp(\mathbf{t}'\mathbf{A}\mathbf{X})] = \exp(\mathbf{t}'\mathbf{b})E[\exp((\mathbf{A}'\mathbf{t})'\mathbf{X})]$
= $\exp(\mathbf{t}'\mathbf{b})\exp\left((\mathbf{A}'\mathbf{t})'\boldsymbol{\mu} + \frac{1}{2}(\mathbf{A}'\mathbf{t})'\boldsymbol{\Sigma}(\mathbf{A}'\mathbf{t})\right)$ by Definition 3.5.1
= $\exp\left((\mathbf{t}'\mathbf{b}) + \mathbf{t}'\mathbf{A}\boldsymbol{\mu} + \frac{1}{2}\mathbf{t}'\mathbf{A}\boldsymbol{\Sigma}\mathbf{A}'\mathbf{t}\right)$
= $\exp\left(\mathbf{t}'(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}) + \frac{1}{2}\mathbf{t}'\mathbf{A}\boldsymbol{\Sigma}\mathbf{A}'\mathbf{t}\right)...$

Theorem 3.5.2 (continued)

Theorem 3.5.2. Suppose **X** has a $N_n(\mu, \Sigma)$ distribution. Let $\mathbf{Y} = \mathbf{AX} + \mathbf{b}$, where **A** is an $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^m$. Then **Y** has a $N_m(\mathbf{A}\mu + \mathbf{b}, \mathbf{A}\Sigma\mathbf{A}')$ distribution.

Proof. ...

$$M_{
m Y}({f t}) = \exp\left({f t}'({f A}\mu+{f b})+rac{1}{2}{f t}'{f A}\Sigma{f A}'{f t}
ight),$$

which is the moment generating function of an $N_m(\mathbf{A}\mu + \mathbf{b}, \mathbf{A}\Sigma\mathbf{A}')$ distribution, as claimed.

Corollary 3.5.1

Corollary 3.5.1. Suppose **X** has a $N_n(\mu, \Sigma)$ distribution partitioned as

$$\mathbf{X} = \left[egin{array}{c} \mathbf{X}_1 \ \mathbf{X}_2 \end{array}
ight], oldsymbol{\mu} = \left[egin{array}{c} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{array}
ight], ext{ and } \mathbf{\Sigma} = \left[egin{array}{c} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{array}
ight]$$

where X_1 and μ_1 are *m* dimensional and Σ_{11} is $m \times m$. Then X_1 has a $N_m(\mu_1, \Sigma_{11})$ distribution.

Proof. Define $m \times (m + p)$ matrix $\mathbf{A} = [\mathbf{I}_m \ \mathbf{0}_{mp}]$ where $\mathbf{0}_{mp}$ is an $m \times p$ matrix of zeros. Then $\mathbf{X}_1 = \mathbf{A}\mathbf{X}$ (notice that \mathbf{A} is $m \times (m + p)$ and \mathbf{X} is $(m + p) \times 1$ so $\mathbf{X}_1 = m \times 1$). So with $\mathbf{b} = \mathbf{0}$, we have by Theorem 3.5.2 that \mathbf{X}_1 has a $N_m(\mathbf{A}\mu, \mathbf{A}\Sigma\mathbf{A}')$ distribution. Now $\mathbf{A}\mu = \mu_1$ and writing $\mathbf{A}\Sigma\mathbf{A}'$ in terms of partitioned matrices gives

$$\mathbf{A}\boldsymbol{\Sigma}\mathbf{A}' = \begin{bmatrix} \mathbf{I}_m & \mathbf{0}_{mp} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_m \\ \mathbf{0}_{mp} \end{bmatrix} = \boldsymbol{\Sigma}_{11}$$

(notice that Σ_{11} is a matrix itself so we do not write $[\Sigma_{11}]$).

Corollary 3.5.1

Corollary 3.5.1. Suppose **X** has a $N_n(\mu, \Sigma)$ distribution partitioned as

$$\mathbf{X} = \left[egin{array}{c} \mathbf{X}_1 \ \mathbf{X}_2 \end{array}
ight], oldsymbol{\mu} = \left[egin{array}{c} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{array}
ight], ext{ and } \mathbf{\Sigma} = \left[egin{array}{c} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{array}
ight]$$

where X_1 and μ_1 are *m* dimensional and Σ_{11} is $m \times m$. Then X_1 has a $N_m(\mu_1, \Sigma_{11})$ distribution.

Proof. Define $m \times (m + p)$ matrix $\mathbf{A} = [\mathbf{I}_m \ \mathbf{0}_{mp}]$ where $\mathbf{0}_{mp}$ is an $m \times p$ matrix of zeros. Then $\mathbf{X}_1 = \mathbf{A}\mathbf{X}$ (notice that \mathbf{A} is $m \times (m + p)$ and \mathbf{X} is $(m + p) \times 1$ so $\mathbf{X}_1 = m \times 1$). So with $\mathbf{b} = \mathbf{0}$, we have by Theorem 3.5.2 that \mathbf{X}_1 has a $N_m(\mathbf{A}\mu, \mathbf{A}\Sigma\mathbf{A}')$ distribution. Now $\mathbf{A}\mu = \mu_1$ and writing $\mathbf{A}\Sigma\mathbf{A}'$ in terms of partitioned matrices gives

$$\mathbf{A}\boldsymbol{\Sigma}\mathbf{A}' = \begin{bmatrix} \mathbf{I}_m \ \mathbf{0}_{mp} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_m \\ \mathbf{0}_{mp} \end{bmatrix} = \boldsymbol{\Sigma}_{11}$$

(notice that Σ_{11} is a matrix itself so we do not write $[\Sigma_{11}]$).

Corollary 3.5.1 (continued)

Corollary 3.5.1. Suppose **X** has a $N_n(\mu, \Sigma)$ distribution partitioned as

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix}, \boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \text{ and } \boldsymbol{\Sigma} = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$$

where X_1 and μ_1 are *m* dimensional and Σ_{11} is $m \times m$. Then X_1 has a $N_m(\mu_1, \Sigma_{11})$ distribution.

Proof. So $\mathbf{A}\mu = \mu_1$ and $\mathbf{A}\Sigma\mathbf{A}' = \Sigma_{11}$. Hence \mathbf{X}_1 has a $N_m(\mathbf{A}\mu, \mathbf{A}\Sigma\mathbf{A}') = N_m(\mu_1, \Sigma_{11})$ distribution, as claimed.

Theorem 3.5.3. Suppose **X** has a $N_n(\mu, \Sigma)$ distribution, partitioned as

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix}, \boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix}, \text{ and } \mathbf{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix}$$

Then X_1 and X_2 are independent if and only if the covariance satisfies $\Sigma_{12} = \mathbf{0}$.

Proof. Since $cov(X_i, X_j) = cov(X_j, X_i)$ then $\Sigma_{21} = \Sigma'_{12}$. By Definition 3.5.1, the moment generating function of **X** is

$$M_{\mathbf{X}}(\mathbf{t}) = \exp(\mathbf{t}' \boldsymbol{\mu} + (1/2)\mathbf{t}' \boldsymbol{\Sigma} \mathbf{t})$$
 for \mathbb{R}^n .

Since $\mathbf{t}' = [\mathbf{t}'_1 \ \mathbf{t}'_2]$ and $\boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$ then $\mathbf{t}' \boldsymbol{\mu} = \mathbf{t}'_1 \boldsymbol{\mu}_1 + \mathbf{t}'_2 \boldsymbol{\mu}_2$.

Theorem 3.5.3. Suppose X has a $N_n(\mu, \Sigma)$ distribution, partitioned as

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix}, \boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix}, \text{ and } \mathbf{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix}$$

Then \textbf{X}_1 and \textbf{X}_2 are independent if and only if the covariance satisfies $\Sigma_{12}=\textbf{0}.$

Proof. Since $cov(X_i, X_j) = cov(X_j, X_i)$ then $\Sigma_{21} = \Sigma'_{12}$. By Definition 3.5.1, the moment generating function of **X** is

$$M_{\mathbf{X}}(\mathbf{t}) = \exp(\mathbf{t}' \boldsymbol{\mu} + (1/2)\mathbf{t}' \boldsymbol{\Sigma} \mathbf{t}) \text{ for } \mathbb{R}^n.$$

Since $\mathbf{t}' = [\mathbf{t}'_1 \ \mathbf{t}'_2]$ and $\boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$ then $\mathbf{t}' \boldsymbol{\mu} = \mathbf{t}'_1 \boldsymbol{\mu}_1 + \mathbf{t}'_2 \boldsymbol{\mu}_2.$

Theorem 3.5.3 (continued 1)

Proof (continued). Also,

$$\begin{split} \mathbf{t}' \boldsymbol{\Sigma} \mathbf{t} &= [\mathbf{t}'_1 \ \mathbf{t}'_2] \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix} \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix} \\ &= [\mathbf{t}'_1 \boldsymbol{\Sigma}_{11} + \mathbf{t}_2 \boldsymbol{\Sigma}_{21} \ \mathbf{t}'_1 \boldsymbol{\Sigma}_{12} + \mathbf{t}'_2 \boldsymbol{\Sigma}_{22}] \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix} \\ &= \mathbf{t}'_1 \boldsymbol{\Sigma}_{11} \mathbf{t}_1 + \mathbf{t}_2 \boldsymbol{\Sigma}_{21} \mathbf{t}_1 + \mathbf{t}'_1 \boldsymbol{\Sigma}_{12} \mathbf{t}_2 + \mathbf{t}'_2 \boldsymbol{\Sigma}_{22} \mathbf{t}_2 \end{split}$$

By Corollary 3.5.1, X_1 has a $N_m(\mu_1, \Sigma_{11})$ distribution and (similarly) X_2 has a $N_p(\mu_2, \Sigma_{22})$ distribution. So by Definition 3.5.1, the marginal distribution functions are $M_{X_1}(\mathbf{t}_1) = \exp(\mathbf{t}'_1\mu_1 + (1/2)\mathbf{t}'_1\Sigma_{11}\mathbf{t}_1)$ and $M_{X_2}(\mathbf{t}_2) = \exp(\mathbf{t}'_2\mu_2 + (1/2)\mathbf{t}'_2\Sigma_{22}\mathbf{t}_2)$ for $[\mathbf{t}'_1 \mathbf{t}'_2] \in \mathbb{R}^n$. By Note 2.6.C (and its observation that Theorem 2.4.5 can be extended to several random variables) we have that X_1 and X_2 are independent if and only if $M_X(\mathbf{t}) = M_{X_1}(\mathbf{t}_1)M_{X_2}(\mathbf{t}_2)$.

Theorem 3.5.3 (continued 1)

Proof (continued). Also,

$$\begin{split} \mathbf{t}' \boldsymbol{\Sigma} \mathbf{t} &= [\mathbf{t}'_1 \ \mathbf{t}'_2] \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix} \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix} \\ &= [\mathbf{t}'_1 \boldsymbol{\Sigma}_{11} + \mathbf{t}_2 \boldsymbol{\Sigma}_{21} \ \mathbf{t}'_1 \boldsymbol{\Sigma}_{12} + \mathbf{t}'_2 \boldsymbol{\Sigma}_{22}] \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix} \\ &= \mathbf{t}'_1 \boldsymbol{\Sigma}_{11} \mathbf{t}_1 + \mathbf{t}_2 \boldsymbol{\Sigma}_{21} \mathbf{t}_1 + \mathbf{t}'_1 \boldsymbol{\Sigma}_{12} \mathbf{t}_2 + \mathbf{t}'_2 \boldsymbol{\Sigma}_{22} \mathbf{t}_2 \end{split}$$

By Corollary 3.5.1, X_1 has a $N_m(\mu_1, \Sigma_{11})$ distribution and (similarly) X_2 has a $N_p(\mu_2, \Sigma_{22})$ distribution. So by Definition 3.5.1, the marginal distribution functions are $M_{X_1}(\mathbf{t}_1) = \exp(\mathbf{t}'_1\mu_1 + (1/2)\mathbf{t}'_1\Sigma_{11}\mathbf{t}_1)$ and $M_{X_2}(\mathbf{t}_2) = \exp(\mathbf{t}'_2\mu_2 + (1/2)\mathbf{t}'_2\Sigma_{22}\mathbf{t}_2)$ for $[\mathbf{t}'_1 \mathbf{t}'_2] \in \mathbb{R}^n$. By Note 2.6.C (and its observation that Theorem 2.4.5 can be extended to several random variables) we have that X_1 and X_2 are independent if and only if $M_X(\mathbf{t}) = M_{X_1}(\mathbf{t}_1)M_{X_2}(\mathbf{t}_2)$.

Theorem 3.5.3 (continued 2)

Theorem 3.5.3. Suppose **X** has a $N_n(\mu, \Sigma)$ distribution, partitioned as

$$\mathbf{X} = \left[egin{array}{c} \mathbf{X}_1 \ \mathbf{X}_2 \end{array}
ight], oldsymbol{\mu} = \left[egin{array}{c} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{array}
ight], ext{ and } \mathbf{\Sigma} = \left[egin{array}{c} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{array}
ight].$$

Then X_1 and X_2 are independent if and only if the covariance satisfies $\Sigma_{12} = \mathbf{0}$.

Proof (continued). If $\Sigma_{12} = \mathbf{0}$, so that $\Sigma_{21} = \Sigma'_{12} = \mathbf{0}'$, then $M_{\mathbf{X}}(\mathbf{t}) = M_{\mathbf{X}_1}(\mathbf{t}_1)M_{\mathbf{X}_2}(\mathbf{t}_2)$ and so by Note 2.6.C \mathbf{X}_1 and \mathbf{X}_2 are independent, as claimed. If \mathbf{X}_1 and \mathbf{X}_2 are independent, then by Note 2.6.C $M_{\mathbf{X}}(\mathbf{t}) = M_{\mathbf{X}_1}(\mathbf{t}_1)M_{\mathbf{X}_2}(\mathbf{t}_2)$ and so $\mathbf{t}'_2\Sigma_{21}\mathbf{t}_1 = \mathbf{0} = \mathbf{t}'_1\Sigma_{12}\mathbf{t}_2$ for all $\begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix} \in \mathbb{R}^n$. So we must have $\Sigma_{12} = \mathbf{0}$ and $\Sigma_{21} = \mathbf{0}'$, as claimed.

Theorem 3.5.3 (continued 2)

Theorem 3.5.3. Suppose **X** has a $N_n(\mu, \Sigma)$ distribution, partitioned as

$$\mathbf{X} = \left[egin{array}{c} \mathbf{X}_1 \ \mathbf{X}_2 \end{array}
ight], oldsymbol{\mu} = \left[egin{array}{c} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{array}
ight], ext{ and } \mathbf{\Sigma} = \left[egin{array}{c} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{array}
ight].$$

Then X_1 and X_2 are independent if and only if the covariance satisfies $\Sigma_{12} = \mathbf{0}$.

Proof (continued). If $\Sigma_{12} = \mathbf{0}$, so that $\Sigma_{21} = \Sigma'_{12} = \mathbf{0}'$, then $M_{\mathbf{X}}(\mathbf{t}) = M_{\mathbf{X}_1}(\mathbf{t}_1)M_{\mathbf{X}_2}(\mathbf{t}_2)$ and so by Note 2.6.C \mathbf{X}_1 and \mathbf{X}_2 are independent, as claimed. If \mathbf{X}_1 and \mathbf{X}_2 are independent, then by Note 2.6.C $M_{\mathbf{X}}(\mathbf{t}) = M_{\mathbf{X}_1}(\mathbf{t}_1)M_{\mathbf{X}_2}(\mathbf{t}_2)$ and so $\mathbf{t}'_2\Sigma_{21}\mathbf{t}_1 = \mathbf{0} = \mathbf{t}'_1\Sigma_{12}\mathbf{t}_2$ for all $\begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix} \in \mathbb{R}^n$. So we must have $\Sigma_{12} = \mathbf{0}$ and $\Sigma_{21} = \mathbf{0}'$, as claimed.

Theorem 3.5.4. Suppose X has a $N_n(\mu, \Sigma)$ distribution, partitioned as

$$\mathbf{X} = \left[egin{array}{c} \mathbf{X}_1 \ \mathbf{X}_2 \end{array}
ight], \boldsymbol{\mu} = \left[egin{array}{c} \boldsymbol{\mu}_1 \ \boldsymbol{\mu}_2 \end{array}
ight], ext{ and } \boldsymbol{\Sigma} = \left[egin{array}{c} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{array}
ight].$$

Assume that Σ is positive definite. Then the conditional distribution of $\textbf{X}_1 \mid \textbf{X}_2$ is

$$N_m(\mu_1+\Sigma_{12}\Sigma_{22}^{-1}(\mathsf{X}_2-\mu_2),\Sigma_{11}-\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}).$$

Proof. Define random variable $\mathbf{W} = \mathbf{X}_1 - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\mathbf{X}_2$. Then

$$\begin{bmatrix} \mathbf{W} \\ \mathbf{X}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{I}_m & -\Sigma_{12}\Sigma_{22}^{-1} \\ \mathbf{0} & \mathbf{I}_p \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix}$$

Theorem 3.5.4. Suppose X has a $N_n(\mu, \Sigma)$ distribution, partitioned as

$$\mathbf{X} = \left[egin{array}{c} \mathbf{X}_1 \ \mathbf{X}_2 \end{array}
ight], \boldsymbol{\mu} = \left[egin{array}{c} \boldsymbol{\mu}_1 \ \boldsymbol{\mu}_2 \end{array}
ight], ext{ and } \boldsymbol{\Sigma} = \left[egin{array}{c} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{array}
ight].$$

Assume that Σ is positive definite. Then the conditional distribution of $\textbf{X}_1 \mid \textbf{X}_2$ is

$$N_m(\mu_1+\Sigma_{12}\Sigma_{22}^{-1}(\mathsf{X}_2-\mu_2),\Sigma_{11}-\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}).$$

Proof. Define random variable $\mathbf{W} = \mathbf{X}_1 - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\mathbf{X}_2$. Then

$$\begin{bmatrix} \mathbf{W} \\ \mathbf{X}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{I}_m & -\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1} \\ \mathbf{0} & \mathbf{I}_p \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix}.$$

Theorem 3.5.4 (continued 1)

Proof (continued). By Theorem 3.5.2 (with $\mathbf{A} = \begin{bmatrix} \mathbf{I}_m & -\Sigma_{12}\Sigma_{22}^{-1} \\ \mathbf{0} & \mathbf{I}_p \end{bmatrix}$

and $\mathbf{b} = \mathbf{0}$) we have that $\begin{bmatrix} \mathbf{W} \\ \mathbf{X}_2 \end{bmatrix}$ has a multivariate normal distribution $N_n(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}')$ where

$$\mathbf{A}' = \begin{bmatrix} \mathbf{I}_m & \mathbf{0}' \\ -(\boldsymbol{\Sigma}_{22}^{-1})'\boldsymbol{\Sigma}_{12}' & \mathbf{I}_p \end{bmatrix} = \begin{bmatrix} \mathbf{I}_m & \mathbf{0} \\ -\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21} & \mathbf{I}_p \end{bmatrix}$$

since $(M^{-1})' = (M')^{-1}$ (see Theorem 3.3.7 in my online notes for Theory of Matrices [MATH 5090] on Section 3.3. Matrix Rank and the Inverse of a Full Rank Matrix). Since

$$\mathbf{A}\boldsymbol{\mu} = \begin{bmatrix} \mathbf{I}_m & -\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1} \\ \mathbf{0} & \mathbf{I}_p \end{bmatrix} \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix} = \begin{bmatrix} \boldsymbol{\mu}_1 - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\mu}_2 \\ \boldsymbol{\mu}_2 \end{bmatrix},$$

then the means are $E[\mathbf{W}] = \mu_1 - \Sigma_{12} \Sigma_{22}^{-1} \mu_2$ and $E[\mathbf{X}_2] = \mu_2$.

Theorem 3.5.4 (continued 1)

Proof (continued). By Theorem 3.5.2 (with $\mathbf{A} = \begin{bmatrix} \mathbf{I}_m & -\Sigma_{12}\Sigma_{22}^{-1} \\ \mathbf{0} & \mathbf{I}_p \end{bmatrix}$

and $\mathbf{b} = \mathbf{0}$) we have that $\begin{bmatrix} \mathbf{W} \\ \mathbf{X}_2 \end{bmatrix}$ has a multivariate normal distribution $N_n(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}')$ where

$$\mathbf{A}' = \begin{bmatrix} \mathbf{I}_m & \mathbf{0}' \\ -(\boldsymbol{\Sigma}_{22}^{-1})'\boldsymbol{\Sigma}_{12}' & \mathbf{I}_p \end{bmatrix} = \begin{bmatrix} \mathbf{I}_m & \mathbf{0} \\ -\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21} & \mathbf{I}_p \end{bmatrix}$$

since $(M^{-1})' = (M')^{-1}$ (see Theorem 3.3.7 in my online notes for Theory of Matrices [MATH 5090] on Section 3.3. Matrix Rank and the Inverse of a Full Rank Matrix). Since

$$\mathbf{A}\boldsymbol{\mu} = \left[\begin{array}{cc} \mathbf{I}_m & -\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1} \\ \mathbf{0} & \mathbf{I}_p \end{array} \right] \left[\begin{array}{c} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{array} \right] = \left[\begin{array}{c} \boldsymbol{\mu}_1 - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\mu}_2 \\ \boldsymbol{\mu}_2 \end{array} \right],$$

then the means are $E[\mathbf{W}] = \mu_1 - \Sigma_{12} \Sigma_{22}^{-1} \mu_2$ and $E[\mathbf{X}_2] = \mu_2$.

Theorem 3.5.4 (continued 2)

Proof (continued). The covariance matrix is

$$\begin{split} \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}' &= \begin{bmatrix} \mathbf{I}_m & -\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \\ \mathbf{0} & \mathbf{I}_p \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I}_m & \mathbf{0}' \\ -\boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} & \mathbf{I}_p \end{bmatrix} \\ &= \begin{bmatrix} \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} & \mathbf{0} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I}_m & \mathbf{0}' \\ -\boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} & \mathbf{I}_p \end{bmatrix} \\ &= \begin{bmatrix} \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} & \mathbf{0}' \\ \mathbf{0} & \boldsymbol{\Sigma}_{22} \end{bmatrix}. \end{split}$$

Since we have a matrix of all 0's in the upper right, then by Theorem 3.5.3 the random vectors **W** and **X**₂ are independent. By Note 2.4.1, if the joint probability density function of **W** and **X**₂ is $f(\mathbf{w}, \mathbf{x}_2)$ then the conditional probability density functions are $f_{\mathbf{W}|\mathbf{X}_2}(\mathbf{w} | \mathbf{x}_2) = f(\mathbf{w}, \mathbf{x}_2)/f(\mathbf{x}_2)$ and $f_{\mathbf{X}_2|\mathbf{W}}(\mathbf{w} | \mathbf{x}_2) = f(\mathbf{w}, \mathbf{x}_2)/f_1(\mathbf{w})$ where the marginal distributions are $f_1(\mathbf{w})$ and $f_2(\mathbf{x}_2)$. By Definition 2.4.1, since **W** and **X**₂ are independent, then $f_{\mathbf{X}_2|\mathbf{W}}(\mathbf{w} | \mathbf{x}_2) = f_1(\mathbf{w})f_2(\mathbf{x}_2)$ (though Note 2.4.1 and Definition 2.4.1 deal with single random variables instead of random vectors).

Theorem 3.5.4 (continued 2)

Proof (continued). The covariance matrix is

$$\begin{split} \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}' &= \begin{bmatrix} \mathbf{I}_m & -\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \\ \mathbf{0} & \mathbf{I}_p \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I}_m & \mathbf{0}' \\ -\boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} & \mathbf{I}_p \end{bmatrix} \\ &= \begin{bmatrix} \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} & \mathbf{0} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I}_m & \mathbf{0}' \\ -\boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} & \mathbf{I}_p \end{bmatrix} \\ &= \begin{bmatrix} \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} & \mathbf{0}' \\ \mathbf{0} & \boldsymbol{\Sigma}_{22} \end{bmatrix}. \end{split}$$

Since we have a matrix of all 0's in the upper right, then by Theorem 3.5.3 the random vectors **W** and **X**₂ are independent. By Note 2.4.1, if the joint probability density function of **W** and **X**₂ is $f(\mathbf{w}, \mathbf{x}_2)$ then the conditional probability density functions are $f_{\mathbf{W}|\mathbf{X}_2}(\mathbf{w} \mid \mathbf{x}_2) = f(\mathbf{w}, \mathbf{x}_2)/f(\mathbf{x}_2)$ and $f_{\mathbf{X}_2|\mathbf{W}}(\mathbf{w} \mid \mathbf{x}_2) = f(\mathbf{w}, \mathbf{x}_2)/f_1(\mathbf{w})$ where the marginal distributions are $f_1(\mathbf{w})$ and $f_2(\mathbf{x}_2)$. By Definition 2.4.1, since **W** and **X**₂ are independent, then $f_{\mathbf{X}_2|\mathbf{W}}(\mathbf{w} \mid \mathbf{x}_2) = f_1(\mathbf{w})f_2(\mathbf{x}_2)$ (though Note 2.4.1 and Definition 2.4.1 deal with single random variables instead of random vectors).

Theorem 3.5.4 (continued 3)

Proof (continued). So the conditional probability density function of $W \mid X_2$ is equal to the marginal density function:

$$f_{\mathbf{W}|\mathbf{X}_2}(\mathbf{x}_2 \mid \mathbf{w}) = rac{f(\mathbf{w}, \mathbf{x}_2)}{f_2(\mathbf{x}_2)} = rac{f_1(\mathbf{w})f_2(\mathbf{x}_2)}{f_2(\mathbf{x}_2)} = f_1(\mathbf{w}).$$

Since $E[\mathbf{W}] = \mu_1 - \Sigma_{12} \Sigma_{22}^{-1} \mu_2$ and the variance of \mathbf{W} is $\Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$, then the marginal distribution of \mathbf{W} (and also the conditional distribution of $\mathbf{W} | \mathbf{X}_2$) is $N_m(\mu_1 - \Sigma_{12} \Sigma_{22}^{-1} \mu_2, \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21})$. Now $\mathbf{X}_1 = \mathbf{W} + \Sigma_{12} \Sigma_{22}^{-1} \mathbf{X}_2$ and so (again by the independence) the distribution of $\mathbf{X}_1 | \mathbf{X}_2$ is $N_m(\mu_1 - \Sigma_{12} \Sigma_{22}^{-1} \mu_2 + \Sigma_{12} \Sigma_{22}^{-1} \mathbf{X}_2, \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21})$, as claimed.

Theorem 3.5.4 (continued 3)

Proof (continued). So the conditional probability density function of $W \mid X_2$ is equal to the marginal density function:

$$f_{\mathbf{W}|\mathbf{X}_2}(\mathbf{x}_2 \mid \mathbf{w}) = \frac{f(\mathbf{w}, \mathbf{x}_2)}{f_2(\mathbf{x}_2)} = \frac{f_1(\mathbf{w})f_2(\mathbf{x}_2)}{f_2(\mathbf{x}_2)} = f_1(\mathbf{w}).$$

Since $E[\mathbf{W}] = \mu_1 - \Sigma_{12} \Sigma_{22}^{-1} \mu_2$ and the variance of \mathbf{W} is $\Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$, then the marginal distribution of \mathbf{W} (and also the conditional distribution of $\mathbf{W} | \mathbf{X}_2$) is $N_m(\mu_1 - \Sigma_{12} \Sigma_{22}^{-1} \mu_2, \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21})$. Now $\mathbf{X}_1 = \mathbf{W} + \Sigma_{12} \Sigma_{22}^{-1} \mathbf{X}_2$ and so (again by the independence) the distribution of $\mathbf{X}_1 | \mathbf{X}_2$ is $N_m(\mu_1 - \Sigma_{12} \Sigma_{22}^{-1} \mu_2 + \Sigma_{12} \Sigma_{22}^{-1} \mathbf{X}_2, \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21})$, as claimed.

Exercise 3.5.8

Exercise 3.5.8. Let X and Y have a bivariate normal distribution with parameters $\mu_1 = 20$, $\mu_2 = 40$, $\sigma_1^2 = 9$, $\sigma_2^2 = 4$, and $\rho = 0.6$. Find the shortest interval for which 0.90 is the conditional probability that Y is in the interval, given that x = 22.

Solution. As seen in Example 3.5.A, the conditional distribution of Y gives X = 22 is

$$N(\mu_2 + (\rho\sigma_1/\sigma_2)(x - \mu_1), \sigma_2^2(1 - \rho^2))$$

 $= N((40) + ((0.6)(3)/(2)((22) - (20)), (4)(1 - (0.6)^2)) = N(41.8, 2.56).$

So the mean is 41.2 and the standard deviation is $\sqrt{1.56} = 1.6$. To get a ("two-sided") interval centered at 41.8 that contains 0.90 of the distribution, we take the Z-value of Z = 1.645 and the interval is

((41.8) - (1.645)(1.6), (41.8) + (1.645)(1.6)) = (39.168, 44.432).

Exercise 3.5.8

Exercise 3.5.8. Let X and Y have a bivariate normal distribution with parameters $\mu_1 = 20$, $\mu_2 = 40$, $\sigma_1^2 = 9$, $\sigma_2^2 = 4$, and $\rho = 0.6$. Find the shortest interval for which 0.90 is the conditional probability that Y is in the interval, given that x = 22.

Solution. As seen in Example 3.5.A, the conditional distribution of Y gives X = 22 is

$$N(\mu_2 + (\rho\sigma_1/\sigma_2)(x - \mu_1), \sigma_2^2(1 - \rho^2))$$

 $= N((40) + ((0.6)(3)/(2)((22) - (20)), (4)(1 - (0.6)^2)) = N(41.8, 2.56).$

So the mean is 41.2 and the standard deviation is $\sqrt{1.56} = 1.6$. To get a ("two-sided") interval centered at 41.8 that contains 0.90 of the distribution, we take the Z-value of Z = 1.645 and the interval is

$$((41.8) - (1.645)(1.6), (41.8) + (1.645)(1.6)) = (39.168, 44.432).$$

Lemma 3.5.B. Consider random vector **X** with multivariate normal distribution $N_n(\mu, \Sigma)$ and $\mathbf{Y} = \Gamma(\mathbf{X} - \mu)$ where Γ is an orthogonal positive definite matrix. Then for any $\mathbf{a} \in \mathbb{R}^n$ with $\|\mathbf{a}\| = 1$, we have $\operatorname{Var}(\mathbf{a}'\mathbf{X}) \leq \operatorname{Var}(Y_1)$. That is, Y_1 has the maximum variance of any linear combination $\mathbf{a}'(\mathbf{X} - \mu)$ where $\|\mathbf{a}\| = \|\mathbf{a}'\| = 1$.

Proof. The first component of **Y** is given by $Y_1 = \mathbf{v}'_1(\mathbf{X} - \mu)$ where \mathbf{v}_1 is the first column of Γ' (and hence the first row of Γ); since Γ and Γ' are orthogonal, then $\|\mathbf{v}_1\|^2 = \sum_{j=1}^n v 1j^2 = 1$. For $\mathbf{a} \in \mathbb{R}^n$ with $\|\mathbf{a}\| = 1$, we have $\mathbf{a} = \sum_{j=1}^n a_j \mathbf{v}_j$ where \mathbf{v}_j is the *j*th column of Γ' (since Γ' is orthogonal and so its columns for an orthonormal set of *n* vectors in \mathbb{R}^n ; i.e., $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is an orthonormal basis of \mathbb{R}^n).

Lemma 3.5.B. Consider random vector **X** with multivariate normal distribution $N_n(\mu, \Sigma)$ and $\mathbf{Y} = \Gamma(\mathbf{X} - \mu)$ where Γ is an orthogonal positive definite matrix. Then for any $\mathbf{a} \in \mathbb{R}^n$ with $\|\mathbf{a}\| = 1$, we have $\operatorname{Var}(\mathbf{a}'\mathbf{X}) \leq \operatorname{Var}(Y_1)$. That is, Y_1 has the maximum variance of any linear combination $\mathbf{a}'(\mathbf{X} - \mu)$ where $\|\mathbf{a}\| = \|\mathbf{a}'\| = 1$.

Proof. The first component of **Y** is given by $Y_1 = \mathbf{v}'_1(\mathbf{X} - \mu)$ where \mathbf{v}_1 is the first column of Γ' (and hence the first row of Γ); since Γ and Γ' are orthogonal, then $\|\mathbf{v}_1\|^2 = \sum_{j=1}^n v_j^2 = 1$. For $\mathbf{a} \in \mathbb{R}^n$ with $\|\mathbf{a}\| = 1$, we have $\mathbf{a} = \sum_{j=1}^n a_j \mathbf{v}_j$ where \mathbf{v}_j is the *j*th column of Γ' (since Γ' is orthogonal and so its columns for an orthonormal set of *n* vectors in \mathbb{R}^n ; i.e., $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is an orthonormal basis of \mathbb{R}^n).

Lemma 3.5.B (continued 1)

Proof (continued). Since $\Sigma = \Gamma' \Lambda \Gamma = \sum_{i=1}^{n} \lambda_i \mathbf{v}_i \mathbf{v}'_i$ (see Note 3.5.D and Exercise 3.5.19) then

$$Var(\mathbf{a}'\mathbf{X}) = \mathbf{a}'\Sigma\mathbf{a} \text{ by Theorem 3.5.2}$$
$$= \mathbf{a}'\Gamma'\Lambda\Gamma\mathbf{a} \text{ since } \Sigma = \Gamma'\Lambda\Gamma$$
$$= \left(\sum_{i=1}^{n} a_i\mathbf{v}_i\right)\Lambda\left(\sum_{j=1}^{n} a_j\mathbf{v}_j'\right) \text{ since } \mathbf{a}'\Gamma' \text{ is a linear}$$

combination of the columns of Γ' with scalars a_i , and Γa is a linear combination of the rows of Γ with scalars a_i (notice that the rows of Γ are the columns of Γ' transposed)

$$= \left(\sum_{i=1}^n \lambda_i a_i \mathbf{v}_i\right) \left(\sum_{j=1}^n a_j \mathbf{v}_j'\right) \text{ since } \mathbf{\Lambda} \text{ is a diagonal matrix} \dots$$

Lemma 3.5.B (continued 2)

Proof (continued). ...

$$Var(\mathbf{a}'\mathbf{X}) = \left(\sum_{i=1}^{n} \lambda_i a_i \mathbf{v}_i\right) \left(\sum_{j=1}^{n} a_j \mathbf{v}_j'\right) \text{ since } \mathbf{\Lambda} \text{ is a diagonal matrix}$$

$$= \sum_{i=1}^{n} \lambda_i \sum_{j=1}^{n} a_i a_j \mathbf{v}_i \mathbf{v}_j' = \sum_{i=1}^{n} \lambda_i \sum_{j=1}^{n} a_i a_j (\mathbf{v}_i \cdot \mathbf{v}_j)$$

$$= \sum_{i=1}^{n} \lambda_i a_i^2 \text{ since } \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\} \text{ is an orthonormal set}$$

$$\leq \lambda_1 \sum_{i=1}^{n} a_i^2 \text{ since } \lambda_1 \text{ is the greatest eigenvalue}$$

$$= \lambda_1 \text{ since } \sum_{i=1}^{n} a_i^2 = ||\mathbf{a}||^1 = 1$$

$$= Var(Y_1).$$

Lemma 3.5.B (continued 3)

Lemma 3.5.B. Consider random vector **X** with multivariate normal distribution $N_n(\mu, \Sigma)$ and $\mathbf{Y} = \Gamma(\mathbf{X} - \mu)$ where Γ is an orthogonal positive definite matrix. Then for any $\mathbf{a} \in \mathbb{R}^n$ with $\|\mathbf{a}\| = 1$, we have $\operatorname{Var}(\mathbf{a}'\mathbf{X}) \leq \operatorname{Var}(Y_1)$. That is, Y_1 has the maximum variance of any linear combination $\mathbf{a}'(\mathbf{X} - \mu)$ where $\|\mathbf{a}\| = \|\mathbf{a}'\| = 1$.

Proof (continued). ... $Var(\mathbf{a}'\mathbf{X}) \leq Var(Y_1)$. So $Var(Y_1) \geq Var(\mathbf{a}'\mathbf{X})$ and hence Y_1 has the maximum variance of any linear combination $\mathbf{a}'(\mathbf{X} - \boldsymbol{\mu})$ where $\|\mathbf{a}'\| = 1$, as claimed.