Mathematical Statistics 1

Chapter 3. Some Special Distributions

3.6. t - and F-Distributions-Proofs of Theorems

Table of contents

(1) Theorem 3.6.1. Student's Theorem

Theorem 3.6.1

Theorem 3.6.1. Student's Theorem.

Let $X_{1}, X_{2}, \ldots, X_{n}$ be identical in distribution ("iid") random variables each having a normal distribution with mean μ and variance σ^{2}. Define the random variables

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \text { and } S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

Then
(a) \bar{X} has a $N\left(\mu, \sigma^{2} / n\right.$ distribution.
(b) \bar{X} and S^{2} are independent.
(c) $(n-1) S^{2} / \sigma^{2}$ has a $\chi^{2}(n-1)$ distribution.
(d) The random variable $T=\frac{\bar{X}-\mu}{S / \sqrt{n}}$ has a Student t-distribution with $n-1$ degrees of freedom.

Theorem 3.6.1

Theorem 3.6.1. Student's Theorem.
Let $X_{1}, X_{2}, \ldots, X_{n}$ be identical in distribution ("iid") random variables each having a normal distribution with mean μ and variance σ^{2}. Define the random variables

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \text { and } S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

Then
(a) \bar{X} has a $N\left(\mu, \sigma^{2} / n\right.$ distribution.
(b) \bar{X} and S^{2} are independent.
(c) $(n-1) S^{2} / \sigma^{2}$ has a $\chi^{2}(n-1)$ distribution.
(d) The random variable $T=\frac{\bar{X}-\mu}{S / \sqrt{n}}$ has a Student t-distribution with $n-1$ degrees of freedom.

Proof. (a) This is Corollary 3.4.1.

Theorem 3.6.1 (continued 1)

(b) $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ and $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ are independent.

Proof (continued). (b) Introduce vector $\mathbf{X}=\left(X_{1}, x_{2}, \ldots, X_{n}\right)^{\prime}$. Since $X_{1}, X_{2}, \ldots, X_{n}$ are iid $N\left(\mu, \sigma^{2}\right)$ random variables, then by definition (see Definition 3.5.1), \mathbf{X} has the multivariate normal distribution $N\left(\mu \mathbf{1}, \sigma^{2} \mathbf{1}\right)$ where $\mathbf{1}$ is a column vector whose components are all 1 . Let $\mathbf{v}^{\prime}=(1 / n) \mathbf{1}^{\prime}$ (a row vector). Then $\mathbf{X}=\mathbf{v}^{\prime} \mathbf{X}$ (notice that we effectively have a dot product here). Define the random vector \mathbf{Y} as $\mathbf{Y}=\left(X_{1}-\bar{X}, X_{2}-\bar{X}, \ldots, X_{n}-\bar{X}\right)^{\prime}$. Consider

$$
\mathbf{W}=\left[\begin{array}{l}
\bar{X} \\
\mathbf{Y}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{v}^{\prime} \\
\mathbf{I}-\mathbf{1} \mathbf{v}^{\prime}
\end{array}\right] \mathbf{X} .
$$

So \mathbf{W} is a linear transformation of \mathbf{X} of the form $\mathbf{W}=\mathbf{A X}+\mathbf{b}$ where
and $\mathbf{b}=\mathbf{0}_{n+1}$ and hence by Theorem 3.5.2 W has mean

Theorem 3.6.1 (continued 1)

(b) $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ and $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ are independent.

Proof (continued). (b) Introduce vector $\mathbf{X}=\left(X_{1}, x_{2}, \ldots, X_{n}\right)^{\prime}$. Since $X_{1}, X_{2}, \ldots, X_{n}$ are iid $N\left(\mu, \sigma^{2}\right)$ random variables, then by definition (see Definition 3.5.1), \mathbf{X} has the multivariate normal distribution $N\left(\mu \mathbf{1}, \sigma^{2} \mathbf{1}\right)$ where $\mathbf{1}$ is a column vector whose components are all 1 . Let $\mathbf{v}^{\prime}=(1 / n) \mathbf{1}^{\prime}$ (a row vector). Then $\mathbf{X}=\mathbf{v}^{\prime} \mathbf{X}$ (notice that we effectively have a dot product here). Define the random vector \mathbf{Y} as $\mathbf{Y}=\left(X_{1}-\bar{X}, X_{2}-\bar{X}, \ldots, X_{n}-\bar{X}\right)^{\prime}$. Consider

$$
\mathbf{w}=\left[\begin{array}{c}
\bar{X} \\
\mathbf{Y}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{v}^{\prime} \\
\mathbf{I}-\mathbf{1} \mathbf{v}^{\prime}
\end{array}\right] \mathbf{X} .
$$

So \mathbf{W} is a linear transformation of \mathbf{X} of the form $\mathbf{W}=\mathbf{A X}+\mathbf{b}$ where $\mathbf{A}=\left[\begin{array}{c}\mathbf{v}^{\prime} \\ \mathbf{I}-\mathbf{1} \mathbf{v}^{\prime}\end{array}\right]$ and $\mathbf{b}=\mathbf{0}_{n+1}$ and hence by Theorem 3.5.2 \mathbf{W} has mean $\mathbf{A} \boldsymbol{\mu}+\mathbf{b}$ or...

Theorem 3.6.1 (continued 2)

(b) $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ and $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ are independent.

Proof (continued). ...

$$
\begin{gathered}
E[\mathbf{W}]=\left[\begin{array}{c}
\mathbf{v}^{\prime} \\
\mathbf{1}-\mathbf{1} \mathbf{v}^{\prime}
\end{array}\right] \mu \mathbf{1}=\left[\begin{array}{c}
\mu \\
\mu \mathbf{1}-\mu \mathbf{1} \mathbf{v}^{\prime} \mathbf{1}
\end{array}\right] \\
=\left[\begin{array}{c}
\mu \\
\mu\left(\mathbf{1}-\mathbf{1}\left(\frac{1}{n} \mathbf{1}^{\prime}\right) \mathbf{1}\right.
\end{array}\right]=\left[\begin{array}{c}
\mu \\
\mu\left(\mathbf{1}-\mathbf{1}\left(\frac{1}{n}\right)(n)\right.
\end{array}\right]=\left[\begin{array}{c}
\mu \\
\mathbf{0}_{n}
\end{array}\right]
\end{gathered}
$$

where $\mathbf{0}_{n}$ denotes a $n \times 1$ column vector of 0 s. Also by Theorem 3.5.2, the covariance of \mathbf{W} is $\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}$ where \mathbf{A} is given above and $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$ (since \mathbf{X} is $N(\boldsymbol{\mu}, \boldsymbol{\Sigma})=N\left(\mu \mathbf{1}, \sigma^{2} \mathbf{1}\right)$. Representing the covariance of \mathbf{W} as $\boldsymbol{\Sigma}$ (as is standard notation) we have

$$
\boldsymbol{\Sigma}=\left[\begin{array}{c}
\mathbf{v}^{\prime} \\
\mathbf{I}-\mathbf{1} \mathbf{v}^{\prime}
\end{array}\right] \sigma^{2} \mathbf{I}\left[\begin{array}{c}
\mathbf{v}^{\prime} \\
\mathbf{I}-\mathbf{1} \mathbf{v}^{\prime}
\end{array}\right]^{\prime} \cdots
$$

Theorem 3.6.1 (continued 3)

Proof (continued). ...

$$
\begin{aligned}
& \boldsymbol{\Sigma}=\left[\begin{array}{c}
\mathbf{v}^{\prime} \\
\mathbf{I}-\mathbf{1} \mathbf{v}^{\prime}
\end{array}\right] \sigma^{2} \mathbf{I}\left[\begin{array}{c}
\mathbf{v}^{\prime} \\
\mathbf{I}-\mathbf{1} \mathbf{v}^{\prime}
\end{array}\right]^{\prime}=\sigma^{2}\left[\begin{array}{c}
\mathbf{v}^{\prime} \\
\mathbf{I}-\mathbf{1} \mathbf{v}^{\prime}
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}^{\prime} \\
\mathbf{I}-\mathbf{1} \mathbf{v}^{\prime}
\end{array}\right]^{\prime} \\
& =\sigma^{2}\left[\begin{array}{c}
\mathbf{v}^{\prime} \\
\mathbf{1}-\mathbf{1} \mathbf{v}^{\prime}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{v} & \mathbf{I}-\mathbf{v} \mathbf{1}^{\prime}
\end{array}\right] \\
& =\sigma^{2}\left[\begin{array}{cc}
n\left(1 / n^{2}\right) & \mathbf{v}^{\prime}-\mathbf{v}^{\prime} \mathbf{1}^{\prime} \\
\mathbf{v}-\mathbf{1} \mathbf{v}^{\prime} \mathbf{v} & \left(\mathbf{I}-\mathbf{v} \mathbf{1}^{\prime}-\mathbf{1} \mathbf{v}^{\prime}+\mathbf{1} \mathbf{v}^{\prime} \mathbf{v} \mathbf{1}^{\prime}\right)
\end{array}\right] \\
& =\sigma^{2}\left[\begin{array}{cc}
1 / n & \mathbf{0}_{n} \\
\mathbf{0}_{n} & \mathbf{I}-\mathbf{1 v}^{\prime}
\end{array}\right] \text { since } \\
& \mathbf{v}-\mathbf{1} \mathbf{v}^{\prime} \mathbf{v}=\mathbf{v}=\mathbf{1}\left(\frac{1}{n} \mathbf{1}^{\prime}\right) \mathbf{v}=\mathbf{v}-\frac{1}{n} \mathbf{1} \mathbf{1}^{\prime} \mathbf{v}=\mathbf{v}-\frac{1}{n}(n) \mathbf{v}=\mathbf{v}-\mathbf{v}=\mathbf{0}_{n} \text { and } \\
& \mathbf{I}-\mathbf{v} \mathbf{1}^{\prime}-\mathbf{1} \mathbf{v}^{\prime}+\mathbf{1} \mathrm{v}^{\prime} \mathbf{v} \mathbf{1}^{\prime}=\mathbf{I}-\mathbf{v} \mathbf{1}^{\prime}-\mathbf{1} \mathrm{v}^{\prime}+\mathbf{1}\left(\frac{1}{n} \mathbf{1}^{\prime}\right) \mathbf{v 1} \\
& =\mathbf{I}-\mathbf{v} \mathbf{1}^{\prime}-\mathbf{1} \mathbf{v}^{\prime}+\frac{1}{n}(n) \mathbf{v} \mathbf{1}^{\prime}=\mathbf{I}-\mathbf{1} \mathbf{v}^{\prime} .
\end{aligned}
$$

Theorem 3.6.1 (continued 4)

(b) $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ and $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ are independent.
(c) $(n-1) S^{2} / \sigma^{2}$ has a $\chi^{2}(n-1)$ distribution.

Proof (continued). By Theorem 3.5.3, since the covariances are 0, then \bar{X} is independent of \mathbf{Y}. Since

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=(n-1)^{-1} \mathbf{Y}^{\prime} \mathbf{Y}
$$

then \bar{X} is also independent of S^{2}, and (b) follows.
(c) To explore the distribution of $(n-1) S^{2} / \sigma^{2}$, consider random variable $V=\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)$

$$
\text { For each } i=1,2, \ldots, n,\left(X_{i}-\mu\right)^{2} / \sigma^{2} \text { has a } \chi^{2}(1)
$$

distribution. Since the X_{i} are independent by hypothesis, then the $\left(X_{i}-\mu\right)^{2} / \sigma^{2}$ are independent and so by Corollary 3.3.1, V is a $\chi^{2}(n)$ random variable.

Theorem 3.6.1 (continued 4)

(b) $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ and $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ are independent.
(c) $(n-1) S^{2} / \sigma^{2}$ has a $\chi^{2}(n-1)$ distribution.

Proof (continued). By Theorem 3.5.3, since the covariances are 0, then \bar{X} is independent of \mathbf{Y}. Since

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=(n-1)^{-1} \mathbf{Y}^{\prime} \mathbf{Y}
$$

then \bar{X} is also independent of S^{2}, and (b) follows.
(c) To explore the distribution of $(n-1) S^{2} / \sigma^{2}$, consider random variable $V=\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2}$. For each $i=1,2, \ldots, n,\left(X_{i}-\mu\right)^{2} / \sigma^{2}$ has a $\chi^{2}(1)$
distribution. Since the X_{i} are independent by hypothesis, then the $\left(X_{i}-\mu\right)^{2} / \sigma^{2}$ are independent and so by Corollary 3.3.1, V is a $\chi^{2}(n)$ random variable.

Theorem 3.6.1 (continued 5)

Proof (continued). We also have

$$
\begin{align*}
V & =\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2}=\sum_{i=1}^{n}\left(\frac{\left(X_{i}-\bar{X}\right)+(\bar{X}-\mu)}{\sigma}\right)^{2} \\
& =\left(\sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}}{\sigma}\right)^{2}\right)+\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}\right)^{2} \\
& =\frac{n-1}{\sigma^{2}}\left(\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right)+\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}\right)^{2} \\
& =\frac{(n-1) S^{2}}{\sigma^{2}}+\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}\right)^{2} . \tag{*}
\end{align*}
$$

By part (b), \bar{X} and S^{2} are independent, so $\frac{(n-1) S^{2}}{\sigma^{2}}$ and $\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}\right)^{2}$ are independent.

Theorem 3.6.1 (continued 6)

Proof (continued). Now $\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}\right)^{2}$ is the square of a standard normal random variable by Corollary 3.4.1 and so by Theorem 3.4.1 $\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}\right)^{2}$ has a $\chi^{2}(1)$ distribution. Since V is a $\chi^{2}(n)$ random variable then the moment generating function of V is $(1-2 t)^{-n / 2}$ by Example 3.3.4. Since $\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}\right)^{2}$
has a $\chi^{2}(1)$ distribution, then the moment generating function is $(1-2 t)^{-1 / 2}$ by Example 3.3.4. Now for random variables X and Y, the moment generating function of $X+Y$ is

$$
E\left(e^{t(X+Y)}\right)=E\left(e^{t X} e^{t Y}\right)=E\left(e^{t X}\right) E\left(e^{t Y}\right)
$$

by Theorem 2.4.4.

Theorem 3.6.1 (continued 7)

$$
\text { (c) }(n-1) S^{2} / \sigma^{2} \text { has a } \chi^{2}(n-1) \text { distribution. }
$$

Proof (continued). So from (*) we have the moment generating functions

$$
(1-2 t)^{-n / 2}=E\left[\operatorname { e x p } \left(t\left(n-1\left(S^{2} / \sigma^{2}\right)\right](1-2 t)^{-1 / 2}\right.\right.
$$

and hence the moment generating function of $(n-1) S^{2} / \sigma^{2}$ is

$$
E\left[\exp \left(t(n-1) S^{2} / \sigma^{2}\right)\right]=(1-2 t)^{-(n-1) / 2} .
$$

This is the moment generating function of a $\chi^{2}(n-1)$ distribution by Example 3.3.4. By the uniqueness of the moment generating function (Theorem 1.9.2), we have that $(n-1) S^{2} / \sigma^{2}$ has a $\chi^{2}(n-1)$ distribution, and (c) follows.

Theorem 3.6.1 (continued 8)

(d) The random variable $T=\frac{\bar{X}-\mu}{S / \sqrt{n}}$ has a Student t-distribution with $n-1$ degrees of freedom.

Proof (continued). (d) We have

$$
T=\frac{\bar{X}-\mu}{S / \sqrt{n}}=\frac{(\bar{X}-\mu) /(\sigma / \sqrt{n})}{\sqrt{S^{2} / \sigma^{2}}}=\frac{(\bar{X}-\mu) /(\sigma / \sqrt{n})}{\sqrt{(n-1) S^{2} /\left(\sigma^{2}(n-1)\right)}} .
$$

So $T=\frac{W}{\sqrt{V / r}}$ where $W=(\bar{X}-\mu) /(\sigma / \sqrt{n})$ has a $N(0,1)$ distribution (by Corollary 3.4.1), $V=(n-1) S^{2} / \sigma^{2}$ has a $\chi^{2}(n-1)$ distribution by part (c), and $r=n-1$. Also, W and V are independent by part (b). Therefore, by Note 3.6.A, T has a t-distribution with r degrees of freedom, and (d) follows.

