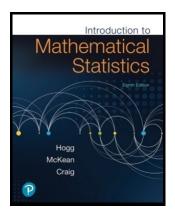
Mathematical Statistics 1

Chapter 3. Some Special Distributions 3.6. *t*- and *F*-Distributions—Proofs of Theorems



Theorem 3.6.1

Theorem 3.6.1. Student's Theorem.

Let X_1, X_2, \ldots, X_n be identical in distribution ("iid") random variables each having a normal distribution with mean μ and variance σ^2 . Define the random variables

$$\overline{X} = rac{1}{n}\sum_{i=1}^n X_i ext{ and } S^2 = rac{1}{n-1}\sum_{i=1}^n (X_i - \overline{X})^2.$$

Then

(a) X̄ has a N(μ, σ²/n distribution.
(b) X̄ and S² are independent.
(c) (n-1)S²/σ² has a χ²(n-1) distribution.
(d) The random variable T = X̄ - μ / S/√n has a Student t-distribution with n - 1 degrees of freedom.
Proof. (a) This is Corollary 3.4.1.

Theorem 3.6.1

Theorem 3.6.1. Student's Theorem.

Let X_1, X_2, \ldots, X_n be identical in distribution ("iid") random variables each having a normal distribution with mean μ and variance σ^2 . Define the random variables

$$\overline{X} = rac{1}{n}\sum_{i=1}^n X_i ext{ and } S^2 = rac{1}{n-1}\sum_{i=1}^n (X_i - \overline{X})^2.$$

Then

(a) X̄ has a N(μ, σ²/n distribution.
(b) X̄ and S² are independent.
(c) (n-1)S²/σ² has a χ²(n-1) distribution.
(d) The random variable T = X̄ - μ / S/√n has a Student t-distribution with n-1 degrees of freedom.
Proof. (a) This is Corollary 3.4.1.

Theorem 3.6.1 (continued 1)

(b)
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$ are independent.

Proof (continued). (b) Introduce vector $\mathbf{X} = (X_1, x_2, \dots, X_n)'$. Since X_1, X_2, \dots, X_n are iid $N(\mu, \sigma^2)$ random variables, then by definition (see Definition 3.5.1), \mathbf{X} has the multivariate normal distribution $N(\mu \mathbf{1}, \sigma^2 \mathbf{1})$ where $\mathbf{1}$ is a column vector whose components are all 1. Let $\mathbf{v}' = (1/n)\mathbf{1}'$ (a row vector). Then $\mathbf{X} = \mathbf{v}'\mathbf{X}$ (notice that we effectively have a dot product here). Define the random vector \mathbf{Y} as $\mathbf{Y} = (X_1 - \overline{X}, X_2 - \overline{X}, \dots, X_n - \overline{X})'$. Consider

$$\mathsf{W} = \left[\begin{array}{c} \mathsf{X} \\ \mathsf{Y} \end{array} \right] = \left[\begin{array}{c} \mathsf{v} \\ \mathsf{I} - \mathsf{1} \mathsf{v}' \end{array} \right] \mathsf{X}.$$

So W is a linear transformation of X of the form W = AX + b where $A = \begin{bmatrix} v' \\ I - 1v' \end{bmatrix}$ and $b = 0_{n+1}$ and hence by Theorem 3.5.2 W has mean $A\mu + b$ or... Theorem 3.6.1 (continued 1)

(b)
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$ are independent.

Proof (continued). (b) Introduce vector $\mathbf{X} = (X_1, x_2, \dots, X_n)'$. Since X_1, X_2, \dots, X_n are iid $N(\mu, \sigma^2)$ random variables, then by definition (see Definition 3.5.1), \mathbf{X} has the multivariate normal distribution $N(\mu \mathbf{1}, \sigma^2 \mathbf{1})$ where $\mathbf{1}$ is a column vector whose components are all 1. Let $\mathbf{v}' = (1/n)\mathbf{1}'$ (a row vector). Then $\mathbf{X} = \mathbf{v}'\mathbf{X}$ (notice that we effectively have a dot product here). Define the random vector \mathbf{Y} as $\mathbf{Y} = (X_1 - \overline{X}, X_2 - \overline{X}, \dots, X_n - \overline{X})'$. Consider $\mathbf{w} = \begin{bmatrix} \overline{X} \\ 1 \end{bmatrix} - \begin{bmatrix} \mathbf{v}' \\ 1 \end{bmatrix} \mathbf{x}$

$$\mathbf{W} = \left[\begin{array}{c} \mathbf{X} \\ \mathbf{Y} \end{array} \right] = \left[\begin{array}{c} \mathbf{v}' \\ \mathbf{I} - \mathbf{1}\mathbf{v}' \end{array} \right] \mathbf{X}.$$

So **W** is a linear transformation of **X** of the form $\mathbf{W} = \mathbf{AX} + \mathbf{b}$ where $\mathbf{A} = \begin{bmatrix} \mathbf{v}' \\ \mathbf{I} - \mathbf{1v}' \end{bmatrix}$ and $\mathbf{b} = \mathbf{0}_{n+1}$ and hence by Theorem 3.5.2 **W** has mean $\mathbf{A}\mu + \mathbf{b}$ or... Theorem 3.6.1 (continued 2)

(b)
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$ are independent.

Proof (continued). ...

$$E[\mathbf{W}] = \begin{bmatrix} \mathbf{v}' \\ \mathbf{I} - \mathbf{1}\mathbf{v}' \end{bmatrix} \mu \mathbf{1} = \begin{bmatrix} \mu \\ \mu \mathbf{1} - \mu \mathbf{1}\mathbf{v}' \mathbf{1} \end{bmatrix}$$
$$= \begin{bmatrix} \mu \\ \mu (\mathbf{1} - \mathbf{1}(\frac{1}{n}\mathbf{1}')\mathbf{1} \end{bmatrix} = \begin{bmatrix} \mu \\ \mu (\mathbf{1} - \mathbf{1}(\frac{1}{n})(n) \end{bmatrix} = \begin{bmatrix} \mu \\ \mathbf{0}_n \end{bmatrix}$$

where $\mathbf{0}_n$ denotes a $n \times 1$ column vector of 0s. Also by Theorem 3.5.2, the covariance of **W** is $\mathbf{A}\Sigma\mathbf{A}'$ where **A** is given above and $\Sigma = \sigma^2 \mathbf{I}$ (since **X** is $N(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = N(\boldsymbol{\mu}\mathbf{1}, \sigma^2\mathbf{1})$. Representing the covariance of **W** as $\boldsymbol{\Sigma}$ (as is standard notation) we have

$$\boldsymbol{\Sigma} = \left[\begin{array}{c} \mathbf{v}' \\ \mathbf{I} - \mathbf{1}\mathbf{v}' \end{array} \right] \sigma^2 \mathbf{I} \left[\begin{array}{c} \mathbf{v}' \\ \mathbf{I} - \mathbf{1}\mathbf{v}' \end{array} \right]' \dots$$

Theorem 3.6.1 (continued 3)

Proof (continued). ...

$$\Sigma = \begin{bmatrix} \mathbf{v}' \\ \mathbf{I} - \mathbf{1}\mathbf{v}' \end{bmatrix} \sigma^2 \mathbf{I} \begin{bmatrix} \mathbf{v}' \\ \mathbf{I} - \mathbf{1}\mathbf{v}' \end{bmatrix}' = \sigma^2 \begin{bmatrix} \mathbf{v}' \\ \mathbf{I} - \mathbf{1}\mathbf{v}' \end{bmatrix} \begin{bmatrix} \mathbf{v}' \\ \mathbf{I} - \mathbf{1}\mathbf{v}' \end{bmatrix}'$$
$$= \sigma^2 \begin{bmatrix} \mathbf{v}' \\ \mathbf{I} - \mathbf{1}\mathbf{v}' \end{bmatrix} \begin{bmatrix} \mathbf{v} & \mathbf{I} - \mathbf{v}\mathbf{1}' \end{bmatrix}$$
$$= \sigma^2 \begin{bmatrix} n(1/n^2) & \mathbf{v}' - \mathbf{v}'\mathbf{1}' \\ \mathbf{v} - \mathbf{1}\mathbf{v}'\mathbf{v} & (\mathbf{I} - \mathbf{v}\mathbf{1}' - \mathbf{1}\mathbf{v}' + \mathbf{1}\mathbf{v}'\mathbf{v}\mathbf{1}') \end{bmatrix}$$
$$= \sigma^2 \begin{bmatrix} 1/n & \mathbf{0}_n \\ \mathbf{0}_n & \mathbf{I} - \mathbf{1}\mathbf{v}' \end{bmatrix} \text{ since}$$
$$- \mathbf{1}\mathbf{v}'\mathbf{v} = \mathbf{v} = \mathbf{1} \left(\frac{1}{n}\mathbf{1}'\right)\mathbf{v} = \mathbf{v} - \frac{1}{n}\mathbf{1}\mathbf{1}'\mathbf{v} = \mathbf{v} - \frac{1}{n}(n)\mathbf{v} = \mathbf{v} - \mathbf{v} = \mathbf{0}_n \text{ and}$$
$$\mathbf{I} - \mathbf{v}\mathbf{1}' - \mathbf{1}\mathbf{v}' + \mathbf{1}\mathbf{v}'\mathbf{v}\mathbf{1}' = \mathbf{I} - \mathbf{v}\mathbf{1}' - \mathbf{1}\mathbf{v}' + \mathbf{1} \left(\frac{1}{n}\mathbf{1}'\right)\mathbf{v}\mathbf{1}$$
$$= \mathbf{I} - \mathbf{v}\mathbf{1}' - \mathbf{1}\mathbf{v}' + \frac{1}{n}(n)\mathbf{v}\mathbf{1}' = \mathbf{I} - \mathbf{1}\mathbf{v}'.$$

v

Theorem 3.6.1 (continued 4)

(b)
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$ are independent.

(c)
$$(n-1)S^2/\sigma^2$$
 has a $\chi^2(n-1)$ distribution.

Proof (continued). By Theorem 3.5.3, since the covariances are 0, then \overline{X} is independent of **Y**. Since

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = (n-1)^{-1} \mathbf{Y}' \mathbf{Y},$$

then \overline{X} is also independent of S^2 , and (b) follows.

(c) To explore the distribution of $(n-1)S^2/\sigma^2$, consider random variable $V = \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2$. For each i = 1, 2, ..., n, $(X_i - \mu)^2/\sigma^2$ has a $\chi^2(1)$ distribution. Since the X_i are independent by hypothesis, then the $(X_i - \mu)^2/\sigma^2$ are independent and so by Corollary 3.3.1, V is a $\chi^2(n)$ random variable.

Theorem 3.6.1 (continued 4)

(b)
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$ are independent.

(c)
$$(n-1)S^2/\sigma^2$$
 has a $\chi^2(n-1)$ distribution.

Proof (continued). By Theorem 3.5.3, since the covariances are 0, then \overline{X} is independent of **Y**. Since

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = (n-1)^{-1} \mathbf{Y}' \mathbf{Y},$$

then \overline{X} is also independent of S^2 , and (b) follows.

(c) To explore the distribution of $(n-1)S^2/\sigma^2$, consider random variable $V = \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2$. For each i = 1, 2, ..., n, $(X_i - \mu)^2/\sigma^2$ has a $\chi^2(1)$ distribution. Since the X_i are independent by hypothesis, then the $(X_i - \mu)^2/\sigma^2$ are independent and so by Corollary 3.3.1, V is a $\chi^2(n)$ random variable.

()

Theorem 3.6.1 (continued 5)

Proof (continued). We also have

$$V = \sum_{i=1}^{n} \left(\frac{X_{i} - \mu}{\sigma}\right)^{2} = \sum_{i=1}^{n} \left(\frac{(X_{i} - \overline{X}) + (\overline{X} - \mu)}{\sigma}\right)^{2}$$
$$= \left(\sum_{i=1}^{n} \left(\frac{X_{i} - \overline{X}}{\sigma}\right)^{2}\right) + \left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}\right)^{2}$$
$$= \frac{n-1}{\sigma^{2}} \left(\frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}\right) + \left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}\right)^{2}$$
$$= \frac{(n-1)S^{2}}{\sigma^{2}} + \left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}\right)^{2}. \qquad (*)$$

By part (b), \overline{X} and S^2 are independent, so $\frac{(n-1)S^2}{\sigma^2}$ and $\left(\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\right)^2$ are independent.

(

Theorem 3.6.1 (continued 6)

Proof (continued). Now $\left(\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\right)^2$ is the square of a standard normal random variable by Corollary 3.4.1 and so by Theorem 3.4.1 $\left(\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}\right)^2$ has a $\chi^2(1)$ distribution. Since V is a $\chi^2(n)$ random variable then the moment generating function of V is $(1-2t)^{-n/2}$ by Example 3.3.4. Since $\left(\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\right)^2$ has a $\chi^2(1)$ distribution, then the moment generating function is $(1-2t)^{-1/2}$ by Example 3.3.4. Now for random variables X and Y, the moment generating function of X + Y is

$$E(e^{t(X+Y)}) = E(e^{tX}e^{tY}) = E(e^{tX})E(e^{tY})$$

by Theorem 2.4.4.

Theorem 3.6.1 (continued 7)

(c) $(n-1)S^2/\sigma^2$ has a $\chi^2(n-1)$ distribution.

Proof (continued). So from (*) we have the moment generating functions

$$(1-2t)^{-n/2} = E[\exp(t(n-1(S^2/\sigma^2))](1-2t)^{-1/2}],$$

and hence the moment generating function of $(n-1)S^2/\sigma^2$ is

$$E[\exp(t(n-1)S^2/\sigma^2)] = (1-2t)^{-(n-1)/2}.$$

This is the moment generating function of a $\chi^2(n-1)$ distribution by Example 3.3.4. By the uniqueness of the moment generating function (Theorem 1.9.2), we have that $(n-1)S^2/\sigma^2$ has a $\chi^2(n-1)$ distribution, and (c) follows.

Theorem 3.6.1 (continued 8)

(d) The random variable
$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$$
 has a Student *t*-distribution with $n - 1$ degrees of freedom.

Proof (continued). (d) We have

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} = \frac{(\overline{X} - \mu)/(\sigma/\sqrt{n})}{\sqrt{S^2/\sigma^2}} = \frac{(\overline{X} - \mu)/(\sigma/\sqrt{n})}{\sqrt{(n-1)S^2/(\sigma^2(n-1))}}.$$

So $T = \frac{W}{\sqrt{V/r}}$ where $W = (\overline{X} - \mu)/(\sigma/\sqrt{n})$ has a N(0, 1) distribution (by Corollary 3.4.1), $V = (n-1)S^2/\sigma^2$ has a $\chi^2(n-1)$ distribution by

part (c), and r = n - 1. Also, W and V are independent by part (b). Therefore, by Note 3.6.A, T has a *t*-distribution with *r* degrees of freedom, and (d) follows.