Mathematical Statistics 1

Chapter 4. Some Elementary Statistical Inferences

 4.2. Confidence Intervals-Proofs of Theorems

Table of contents

(1) Exercise 4.2.1
(2) Exercise 4.2.A

Exercise 4.2.1

Exercise 4.2.1. Let the observed value of the mean \bar{X} and the sample variance of a ransom sample of size 20 from a distribution that is $N\left(\mu, \sigma^{2}\right)$ be 81.2 and 25.6 , respectively. First, the $90 \%, 95 \%$, and 99% confidence intervals for μ. Not how the lengths of the confidence intervals increase as the confidence increases.

Solution. We are given $n=20, \bar{x}=81.2$, and $s=26.5$. We are interested in $\alpha \in\{0.10,0.05,0.01\}$, so we need $t_{\alpha / 2,19}$ for these values. We find (from software or a table) that

$$
t_{0.05,19}=1.729, \quad t_{0.025,19}=2.093, \text { and } t_{0.005,19}=2.861,
$$

so that the confidence intervals are
$90 \%:(81.2-1.729(26.5) / \sqrt{2}, 81.2+1.729(26.5) / \sqrt{2})=(70.95,91.45)$,
$95 \%:(81.2-2.093(26.5) / \sqrt{2}, 81.2+2.093(26.5) / \sqrt{2})=(68.80,93.60)$,
$99 \%:(81.2-2.861(26.5) / \sqrt{2}, 81.2+2.861(26.5) / \sqrt{2})=(64.25,98.15)$.

Exercise 4.2.1

Exercise 4.2.1. Let the observed value of the mean \bar{X} and the sample variance of a ransom sample of size 20 from a distribution that is $N\left(\mu, \sigma^{2}\right)$ be 81.2 and 25.6 , respectively. First, the $90 \%, 95 \%$, and 99% confidence intervals for μ. Not how the lengths of the confidence intervals increase as the confidence increases.

Solution. We are given $n=20, \bar{x}=81.2$, and $s=26.5$. We are interested in $\alpha \in\{0.10,0.05,0.01\}$, so we need $t_{\alpha / 2,19}$ for these values.
We find (from software or a table) that

$$
t_{0.05,19}=1.729, \quad t_{0.025,19}=2.093, \text { and } t_{0.005,19}=2.861,
$$

so that the confidence intervals are

$$
\begin{array}{ll}
90 \%: & (81.2-1.729(26.5) / \sqrt{2}, 81.2+1.729(26.5) / \sqrt{2})=(70.95,91.45), \\
95 \%: & (81.2-2.093(26.5) / \sqrt{2}, 81.2+2.093(26.5) / \sqrt{2})=(68.80,93.60), \\
99 \%: & (81.2-2.861(26.5) / \sqrt{2}, 81.2+2.861(26.5) / \sqrt{2})=(64.25,98.15) .
\end{array}
$$

Exercise 4.2.1 (continued)

Exercise 4.2.1. Let the observed value of the mean \bar{X} and the sample variance of a ransom sample of size 20 from a distribution that is $N\left(\mu, \sigma^{2}\right)$ be 81.2 and 25.6 , respectively. First, the $90 \%, 95 \%$, and 99% confidence intervals for μ. Not how the lengths of the confidence intervals increase as the confidence increases.

Solution (continued). Since the confidence intervals are

$$
\begin{array}{ll}
90 \%: & (70.95,91.45), \\
95 \%: & (68.80,93.60), \\
99 \%: & (64.25,98.15),
\end{array}
$$

we observe that the greater the confidence, the larger the interval (as we should expect). \square

Exercise 4.2.A

Exercise 4.2.A. (From William Navadi's Statistics for Engineers and Scientists, 3rd Edition, McGraw-Hill [2011]). In a simple random sample of 70 automobiles registered in a certain state, 28 or them were found to have emission levels that exceed a state standard. Find 95% and 98% confidence intervals for the proportion of automobiles in the state whose emission levels exceed the standard.

Solution. Let X be the Bernoulli random variable X where $X=1$ when automobile's emission level exceeds the state standard (a "success") and $X=0$ otherwise. For the sample, we have $n=70$ and
$\bar{X}=28 / 70=0.40=\hat{p}$. For $\alpha=0.05$ we have $z_{\alpha / 2}=z_{0.025}=1.96$, and for $\alpha 0.02$ we have $Z_{\alpha / 2}=z_{0.01}=2.33$. So the 95% confidence interval for the proportion p of automobile in the state whose emission levels exceed the standard is

Exercise 4.2.A

Exercise 4.2.A. (From William Navadi's Statistics for Engineers and Scientists, 3rd Edition, McGraw-Hill [2011]). In a simple random sample of 70 automobiles registered in a certain state, 28 or them were found to have emission levels that exceed a state standard. Find 95% and 98% confidence intervals for the proportion of automobiles in the state whose emission levels exceed the standard.

Solution. Let X be the Bernoulli random variable X where $X=1$ when automobile's emission level exceeds the state standard (a "success") and $X=0$ otherwise. For the sample, we have $n=70$ and $\bar{X}=28 / 70=0.40=\hat{p}$. For $\alpha=0.05$ we have $z_{\alpha / 2}=z_{0.025}=1.96$, and for $\alpha 0.02$ we have $Z_{\alpha / 2}=z_{0.01}=2.33$. So the 95% confidence interval for the proportion p of automobile in the state whose emission levels exceed the standard is ...

Exercise 4.2.A (continued)

Exercise 4.2.A. In a simple random sample of 70 automobiles registered in a certain state, 28 or them were found to have emission levels that exceed a state standard. Find 95% and 98% confidence intervals for the proportion of automobiles in the state whose emission levels exceed the standard.

Solution (continued).

$$
\begin{gathered}
\left(\hat{p}-z_{0.025} \sqrt{\hat{p}(1-\hat{p}) / n}, \hat{p}+z_{0.025} \sqrt{\hat{p}(1-\hat{p}) / n}\right) \\
=(0.40-1.96 \sqrt{0.40(1-0.40) / 70}, 0.40+1.96 \sqrt{0.40(1-0.40) / 70}) \\
=(0.29,0.51)
\end{gathered}
$$

and similarly the 98% confidence interval is

$$
\begin{gathered}
(0.40-2.33 \sqrt{0.40(1-0.40) / 70}, 0.40+2.33 \sqrt{0.40(1-0.40) / 70}) \\
=(0.26,0.54) . \quad \square
\end{gathered}
$$

