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Chapter 5. Consistency and Limiting Distributions
5.1. Convergence in Probability—Proofs of Theorems
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Theorem 5.1.2

Theorem 5.1.2. Suppose X, P X and Y, LY. Then
Xo+ Yn D X+Y,

Proof. Let € > 0 be given. Let C be the sample space on which the
random variables are defined. Then for each ¢ € C we have by the Triangle
Inequality on R that

[(Xa(c) + Ya(c)) = (X(c) + Y(c)| < [Xa(c) = X(c)| + |Yalc) = Y(c)I.
So
{ceC [ (Xn(c) + Yalc)) — (X(c) + Y(c))| = ¢}
S {celC|[Xa(c) = X(c)l + |Yalc) = Y(c)[ = €}.
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Theorem 5.1.1

Theorem 5.1.1. Weak Law of Large Numbers.
Let {X,} be a sequence of independent and identically distributed (“idd")
random variables having common mean p < oo and variance 02 < co. Let

Xn= (32" X;) /n (this is the sample mean). Then X, L L.

Proof. By Theorem 2.8.1, E(X,) = >_7_, p1/n = p. By Corollary 2.8.2,
Var(X,) = Y.1_, 0%/n* = 02 /n. So by Chebychev’s Inequality (Theorem
1.10.3; see Note 1.10.A), we have for every € > 0

- no Var(X,) o2
P(Xn—pl>e)=P([Xp—pl >0 7 ) < -2
(%ol 2 9) = P (Kl > 202 ) < ) _ 2
2
For given ¢ > 0, lim 0—2 = 0 and so (by the Sandwich Theorem, say)
n—oo Ne
lim P(|X, —pu|>e¢) —0)and lim P|X,— u| <¢e)=0.
n—oo n—oo
Since € > 0 is arbitrary, we have that X, LA 1, as claimed. O
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Theorem 5.1.2 (continued 1)

Proof (continued). By Theorem 1.3.3, P is monotone so that
P(I(Xn + Ya) = (X + Y)| 2 €)

= P({c € C | (Xa(c) + Ya(c)) = (X(c) + Y(c))| = €})
< P({c € C|[Xa(c) = X(c)| +|Ya(c) = Y(c)| = €})
=P Xy —X|+|Ya=Y|>e). (%)

— X()] + [Yal€) = V()] = &, we
— X(c)| >¢e/20r |Yn—Y(c)| >¢/2. Thatis,

= X(A) +[Ya(e) = Y(c)| = e}

—X(c)| z¢e/2}U{ceC||Ya(c) = Y(c)| = £/2}.

Now for any ¢ € C such that | X,(c)
must have either X,(c)

{ceC||Xn(c)

C{ceC||Xn(c)
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Theorem 5.1.2 (continued 2)

Proof (continued). So by Theorem 1.3.3 (monotonicity or P) and
Theorem 1.3.5 (which implies P(AU B) < P(A) + P(B); this is called
subadditivity in measure theory),

P(| Xy — X| 4+ |Yn— Y| >¢€})
= P({c € C [ Xa(c) = X(e)| +[Ya(c) = Y(c)| = €})
< P({c € C[|Xa(c)=X(c)| = ¢/2})+ P({c € C | [Ya(c) = Y(c)| = €/2})
= P(|Xn — X| >¢/2)+ P(|Y,— Y| > ¢/2).
Combining this with (x) we have
P(|Xn+ Yol = | X+ Y]|) >¢e) < P(|Xa — X| >¢/2) + P(|Y, — Y| > €/2).
Since X, * X and Y, LY then
nILmOO P(|X, — X| > ¢/2) = 0 and nILngo P(|Yn—Y]|>¢/2) =0.

S0 liMmp_oo P([Xn + Yol = X+ Y]) =€) =0and X, + Yo = X+ Y. O
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Theorem 5.1.4

Theorem 5.1.4. Suppose X, %, 3 and the real function g is continuous at
a. Then g(X,) L g(a).

Proof. Let € > 0 be given. Then since g is continuous at a, by the
definition of continuity there exists § > 0 such that if |x — a| < § then
lg(x) — g(a)] < e. So for any x such that |g(x) — g(a)| > ¢, we must
have |x — a| > 0. Let C be the sample space on which the random
variables are defined. Then we have

{ceC|lg(Xnlc)) —g(a)l =z e} S{ceC||Xn(c)—al = d}.
By Theorem 1.3.3, P is monotone so that
P({c € C|lg(Xa(c)) —g(a)l z }) < P({c € C | [Xn(c) — a| = 6}).
Since X, = a, then limy_oo P({c € C||Xn(c)—a|] > d}) =0. So (by the
Sandwich Theorem, say) lim, o P({c € C | |g(Xa(c)) — g(a)| > ¢}) =

lim,—oo P(lg(Xn) — g(a)] > ¢) =0 and g(X,) L g(a), as claimed. O
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Theorem 5.1.3

Theorem 5.1.3. Suppose X, P, X and a'is a constant. Then aXy P ax.

Proof. First, the result holds trivially if a = 0 so we can suppose without
loss of generality that a £ 0. We have

P(|aX, — aX| > ¢) = P(|a||X — X,| > ¢) = P(| X, — X| > ¢/]al).

Since X, — X the limp—oc P(|Xn — X| > ¢/]a]) = 0 so (by the Sandwich

Theorem, say) lim,_.o P(]aX, — aX| > ¢) = 0 so that aX, LA aX, as
claimed. O
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Theorem 5.1.5

Theorem 5.1.5. Suppose X, = X and Y, 2 Y. Then X, Y, > XY.

Proof. First, X, Y, = %X,% + %Ynz — %(X,7 - Y2
We have by Theorem 5.1.2, Theorem 5.1.3, and Theorem 5.1.A that

1 1 1 p 1 1 1
XnYo=2X2+ 2V, —Z(Xa— Yn)? 5 X2+ 2Y2 - (X = V) = XY.
nYn=3X £ 50 =X = Ya)T = S X0 45 > )

That is, X, Y, ©— XY, as claimed. O
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Theorem 5.1.B

Theorem 5.1.B. Let X1, X5,..., X, be a random sample from a
distribution of X with finite mean z and finite variance 02 where E[X*] is
finite, then the sample variance

1 _

i=1

(where X, = 137 X;) is a consistent estimator of o2.

Proof. In Theorem 2.8.A we showed that S2 is an unbiased estimator of
o2 (that is, E[S?] = 02). Here we need to show the convergence in
probability. Since E[X*] is finite, then Var(5?) < oo so that the
hypotheses of The Weak law of Large Numbers (Theorem 5.1.1) are
satisfied. By Theorem 5.1.1, Theorem 5.1.2, Theorem 5.1.3, Theorem
5.1.A, and the fact that limp_o n/(n —1) = 1, we have...

Mathematical Statistics 1 June 6, 2021 10 / 11

Theorem 5.1.B (continued)

Proof (continued).

1 < - 1 < - =2
S2 = — Z(x,- —X,)? = — Z(x,? —2X; X, + X3)
i=1 i=1

n Iem o, 2X, & 1
—n_1<;§Xf‘T§X'+;(”X")
n 1 <2\ P
-2 (;ZX? —xn> P A)EXT - ) = 0.
=1

. P

(We could use more details here on why 1 37 | X2 5 E[X?]; these
details are to be given in Exercise 5.1.A.) That is, the sample variance 52
is a consistent estimator of the variance 02, as claimed. O
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