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Chapter 5. Consistency and Limiting Distributions
5.1. Convergence in Probability—Proofs of Theorems
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Theorem 5.1.1. Weak Law of Large Numbers

Theorem 5.1.1

Theorem 5.1.1. Weak Law of Large Numbers.
Let {Xn} be a sequence of independent and identically distributed (“idd”)
random variables having common mean µ < ∞ and variance σ2 < ∞. Let

X n = (
∑n

i=1 Xi ) /n (this is the sample mean). Then X n
P→ µ.

Proof. By Theorem 2.8.1, E (X n) =
∑n

i=1 µ/n = µ. By Corollary 2.8.2,
Var(X n) =

∑n
i=1 σ2/n2 = σ2/n. So by Chebychev’s Inequality (Theorem

1.10.3; see Note 1.10.A), we have for every ε > 0

P(|X n − µ| ≥ ε) = P

(
|X n − µ| ≥ ε

√
n

σ

σ√
n

)
≤ Var(X n)

ε2
=

σ2

nε2
.

For given ε > 0, lim
n→∞

σ2

nε2
= 0 and so (by the Sandwich Theorem, say)

lim
n→∞

P(|X n − µ| ≥ ε) → 0) and lim
n→∞

P|X n − µ| < ε) = 0.

Since ε > 0 is arbitrary, we have that X n
P→ µ, as claimed.
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Theorem 5.1.2

Theorem 5.1.2

Theorem 5.1.2. Suppose Xn
P→ X and Yn

P→ Y . Then

Xn + Yn
P→ X + Y .

Proof. Let ε > 0 be given. Let C be the sample space on which the
random variables are defined. Then for each c ∈ C we have by the Triangle
Inequality on R that

|(Xn(c) + Yn(c)) = (X (c) + Y (c)| ≤ |Xn(c)− X (c)|+ |Yn(c)− Y (c)|.

So
{c ∈ C | (Xn(c) + Yn(c))− (X (c) + Y (c))| ≥ ε}

⊆ {c ∈ C | |Xn(c)− X (c)|+ |Yn(c)− Y (c)| ≥ ε}.
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Theorem 5.1.2

Theorem 5.1.2 (continued 1)

Proof (continued). By Theorem 1.3.3, P is monotone so that

P(|(Xn + Yn)− (X + Y )| ≥ ε)

= P({c ∈ C | (Xn(c) + Yn(c))− (X (c) + Y (c))| ≥ ε})

≤ P({c ∈ C | |Xn(c)− X (c)|+ |Yn(c)− Y (c)| ≥ ε})

= P(|Xn − X |+ |Yn − Y | ≥ ε). (∗)

Now for any c ∈ C such that |Xn(c)− X (c)|+ |Yn(c)− Y (c)| ≥ ε, we
must have either Xn(c)− X (c)| ≥ ε/2 or |Yn − Y (c)| ≥ ε/2. That is,

{c ∈ C | |Xn(c)− X (c)|+ |Yn(c)− Y (c)| ≥ ε}

⊆ {c ∈ C | |Xn(c)− X (c)| ≥ ε/2} ∪ {c ∈ C | |Yn(c) = Y (c)| ≥ ε/2}.
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Theorem 5.1.2

Theorem 5.1.2 (continued 2)

Proof (continued). So by Theorem 1.3.3 (monotonicity or P) and
Theorem 1.3.5 (which implies P(A ∪ B) ≤ P(A) + P(B); this is called
subadditivity in measure theory),

P(|Xn − X |+ |Yn − Y | ≥ ε})

= P({c ∈ C | |Xn(c)− X (c)|+ |Yn(c)− Y (c)| ≥ ε})
≤ P({c ∈ C | |Xn(c)−X (c)| ≥ ε/2})+P({c ∈ C | |Yn(c)−Y (c)| ≥ ε/2})

= P(|Xn − X | ≥ ε/2) + P(|Yn − Y | ≥ ε/2).

Combining this with (∗) we have

P(|Xn + Yn| − |X + Y |) ≥ ε) ≤ P(|Xn − X | ≥ ε/2) + P(|Yn − Y | ≥ ε/2).

Since Xn
P→ X and Yn

P→ Y then

lim
n→∞

P(|Xn − X | ≥ ε/2) = 0 and lim
n→∞

P(|Yn − Y | ≥ ε/2) = 0.

So limn→∞ P(|Xn + Yn| − |X + Y |) ≥ ε) = 0 and Xn + Yn
P→ X + Y .
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Theorem 5.1.3

Theorem 5.1.3

Theorem 5.1.3. Suppose Xn
P→ X and a is a constant. Then aXn

P→ aX .

Proof. First, the result holds trivially if a = 0 so we can suppose without
loss of generality that a 6= 0. We have

P(|aXn − aX | ≥ ε) = P(|a||X − Xn| ≥ ε) = P(|Xn − X | ≥ ε/|a|).

Since Xn
P→ X the limn→∞ P(|Xn − X | ≥ ε/|a|) = 0 so (by the Sandwich

Theorem, say) limn→∞ P(|aXn − aX | ≥ ε) = 0 so that aXn
P→ aX , as

claimed.
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Theorem 5.1.4

Theorem 5.1.4

Theorem 5.1.4. Suppose Xn
P→ a and the real function g is continuous at

a. Then g(Xn)
P→ g(a).

Proof. Let ε > 0 be given. Then since g is continuous at a, by the
definition of continuity there exists δ > 0 such that if |x − a| < δ then
|g(x)− g(a)| < ε. So for any x such that |g(x)− g(a)| ≥ ε, we must
have |x − a| ≥ δ. Let C be the sample space on which the random
variables are defined. Then we have

{c ∈ C | |g(Xn(c))− g(a)| ≥ ε} ⊆ {c ∈ C | |Xn(c)− a| ≥ δ}.

By Theorem 1.3.3, P is monotone so that

P({c ∈ C | |g(Xn(c))− g(a)| ≥ ε}) ≤ P({c ∈ C | |Xn(c)− a| ≥ δ}).

Since Xn
P→ a, then limn→∞ P({c ∈ C | |Xn(c)− a| ≥ δ}) = 0. So (by the

Sandwich Theorem, say) limn→∞ P({c ∈ C | |g(Xn(c))− g(a)| ≥ ε}) =

limn→∞ P(|g(Xn)− g(a)| ≥ ε) = 0 and g(Xn)
P→ g(a), as claimed.
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Theorem 5.1.5

Theorem 5.1.5

Theorem 5.1.5. Suppose Xn
P→ X and Yn

P→ Y . Then XnYn
P→ XY .

Proof. First, XnYn = 1
2X 2

n + 1
2Y 2

n − 1
2(Xn − Yn)

2.

We have by Theorem 5.1.2, Theorem 5.1.3, and Theorem 5.1.A that

XnYn =
1

2
X 2

n +
1

2
Y 2

n −
1

2
(Xn − Yn)

2 P→ 1

2
X 2 +

1

2
Y 2 − 1

2
(X − Y )2 = XY .

That is, XnYn
P→ XY , as claimed.
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Theorem 5.1.B

Theorem 5.1.B

Theorem 5.1.B. Let X1,X2, . . . ,Xn be a random sample from a
distribution of X with finite mean µ and finite variance σ2 where E [X 4] is
finite, then the sample variance

S2
n =

1

n − 1

n∑
i=1

(Xi − X n)
2

(where X n = 1
n

∑n
i=1 Xi ) is a consistent estimator of σ2.

Proof. In Theorem 2.8.A we showed that S2
n is an unbiased estimator of

σ2 (that is, E [S2] = σ2). Here we need to show the convergence in
probability. Since E [X 4] is finite, then Var(S2) < ∞ so that the
hypotheses of The Weak law of Large Numbers (Theorem 5.1.1) are
satisfied. By Theorem 5.1.1, Theorem 5.1.2, Theorem 5.1.3, Theorem
5.1.A, and the fact that limn→∞ n/(n − 1) = 1, we have. . .
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Theorem 5.1.B

Theorem 5.1.B (continued)

Proof (continued).

S2
n =

1

n − 1

n∑
i=1

(Xi − X n)
2 =

1

n − 1

n∑
i=1

(X 2
i − 2XiX n + X

2
n)

=
n

n − 1

(
1

n

n∑
i=1

X 2
i −

2X n

n

n∑
i=1

Xi +
1

n
(nX n)

)

=
n

n − 1

(
1

n

n∑
i=1

X 2
i − X

2
n

)
P→ (1)(E [X 2]− µ2) = σ2.

(We could use more details here on why 1
n

∑n
i=1 X 2

i
P→ E [X 2]; these

details are to be given in Exercise 5.1.A.) That is, the sample variance S2
n

is a consistent estimator of the variance σ2, as claimed.
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