Mathematical Statistics 1

Chapter 5. Consistency and Limiting Distributions
5.1. Convergence in Probability—Proofs of Theorems

Introduction to
Mathematical
Statistics

®
Hogg

McKean

Craig

Mathematical Statistics 1 June 6, 2021

1/11



R —
Table of contents

@ Theorem 5.1.1. Weak Law of Large Numbers
© Theorem 5.1.2
© Theorem 5.1.3
@ Theorem 5.1.4
© Theorem 5.1.5

@ Theorem 5.1.B

Mathematical Statistics 1 June 6, 2021 2/11



Theorem 5.1.1. Weak Law of Large Numbers

Theorem 5.1.1

Theorem 5.1.1. Weak Law of Large Numbers.

Let {X,} be a sequence of independent and identically distributed (“idd")
random variables having common mean p < oo and variance 02 < co. Let
Xn= (321 X;) /n (this is the sample mean). Then X, L8 L.
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Theorem 5.1.1

Theorem 5.1.1. Weak Law of Large Numbers.
Let {X,} be a sequence of independent and identically distributed (“idd")
random variables having common mean p < oo and variance 02 < co. Let

Xn= (321 X;) /n (this is the sample mean). Then X, L8 L.

Proof. By Theorem 2.8.1, E(X,) = > /_; i/n = pu. By Corollary 2.8.2,
Var(X,) = Y1, 02/n?> = 02 /n. So by Chebychev's Inequality (Theorem
1.10.3; see Note 1.10.A), we have for every £ > 0
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Theorem 5.1.1

Theorem 5.1.1. Weak Law of Large Numbers.
Let {X,} be a sequence of independent and identically distributed (“idd")
random variables having common mean p < oo and variance 02 < co. Let

Xn= (321 X;) /n (this is the sample mean). Then X, L8 L.

Proof. By Theorem 2.8.1, E(X,,) = >.i_; s1/n = p. By Corollary 2.8.2,
Var(X,) = Y1, 02/n?> = 02 /n. So by Chebychev's Inequality (Theorem
1.10.3; see Note 1.10.A), we have for every £ > 0

evn o\ _ Var(X,) o?
o /n) ~
2

For given € > 0, lim :—82 =0 and so (by the Sandwich Theorem, say)

PR~ 1 2 £) = P (%o =l > =

lim P(|X,—pu|>¢)—0)and lim P|X,—u| <e)=0.

. . . ~ P .
Since € > 0 is arbitrary, we have that X, — p, as claimed. O
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Theorem 5.1.2

Theorem 5.1.2. Suppose X, £ X and Yn LY. Then
Xo+ Yo B X+ Y.
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Theorem 5.1.2

Theorem 5.1.2. Suppose X, £ X and Yn LY. Then
Xo+ Yo B X+ Y.

Proof. Let £ > 0 be given. Let C be the sample space on which the
random variables are defined. Then for each ¢ € C we have by the Triangle
Inequality on R that

(Xn(c) + Ya(c)) = (X(c) + Y(e)| < [Xn(c) = X(c)[ + [Yalc) = Y(c)I.

So
{c e C[(Xn(c) + Ya(c)) — (X(c) + Y(c))| = €}
C {ceC|[Xa(c) = X(c)| + |Yn(c) = Y(c)| = €}
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Theorem 5.1.2 (continued 1)

Proof (continued). By Theorem 1.3.3, P is monotone so that
P(I(Xn + Ya) = (X + Y)[ > ¢)

= P({c € C[ (Xalc) + Ya(c)) — (X(c) + Y(c))| = €})
< P({e e C[[Xa(c) = X(c)| + [Ya(c) = Y(e)| = €})
=P X0 = X[+ [Ya=Y[Z>e). ()
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Theorem 5.1.2 (continued 1)

Proof (continued). By Theorem 1.3.3, P is monotone so that
P(I(Xn + Ya) = (X + Y)[ > ¢)
= P({c € C [ (Xn(c) + Ya(c)) = (X(c) + Y(c))| = €})
< P({c e C|[Xa(c) = X(c)[ + [Yalc) = Y(c)| = €})
= P(Xo =X +[Ya=Y[Ze). (%)

Now for any ¢ € C such that | X,(c) — X(c)| + | Ya(c) — Y(c)| > ¢, we
must have either X,(c) — X(c)| > e/2 or |Y, — Y(c)| > /2. That is,
{c e[ Xalc) = X()| +[Yn(c) = Y(c)| = e}

C{cel||Xnc)—X(c)| =e/2}Uu{ceC||Ya(c)=Y(c)| >¢e/2}.
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Theorem 5.1.2 (continued 2)
Proof (continued). So by Theorem 1.3.3 (monotonicity or P) and

Theorem 1.3.5 (which implies P(AU B) < P(A) + P(B); this is called
subadditivity in measure theory),

P(|Xn = X[+ |Yn— Y| >¢€})
= P({c € C[[X(c) = X(c)[ + [Yalc) = Y(c)| = €})
< P({eeC|[Xa(c)=X(c)| 2 &/2}) + P({c € C [ |Ya(c) = Y(c)| = £/2})
=P(|Xn — X| >¢/2)+ P(|Yn— Y| >¢/2).
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Theorem 5.1.2 (continued 2)
Proof (continued). So by Theorem 1.3.3 (monotonicity or P) and

Theorem 1.3.5 (which implies P(AU B) < P(A) + P(B); this is called
subadditivity in measure theory),

P(|Xn = X|+|Yn— Y] >¢})
= P({c € C[[X(c) = X(c)[ + [Yalc) = Y(c)| = €})
< P({eeC|[Xa(c)=X(c)| 2 &/2}) + P({c € C [ |Ya(c) = Y(c)| = £/2})
= P(1Xn = X| = £/2) + P(| Yo — Y| = £/2).
Combining this with (%) we have
P(|Xn+ Yol = I X+ Y]) >¢e) < P(|Xn — X[ >¢€/2)+ P(|Yn— Y| >¢/2).
Since X, * X and Y, £ Y then
nIer;o P(|X, — X| > €/2) =0 and nhj;o P(|Yn—Y]|>¢/2)=0.

S0 limp_oo P([Xn + Yol = IX + Y[) =€) =0and X, + Y, > X+ Y. O
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Theorem 5.1.3

Theorem 5.1.3. Suppose X, . X and a is a constant. Then aXy P ax.
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Theorem 5.1.3

Theorem 5.1.3. Suppose X, . X and a is a constant. Then aXy P ax.

Proof. First, the result holds trivially if a = 0 so we can suppose without
loss of generality that a # 0. We have

P(|aX, — aX| > ¢) = P(Ja||X — X,| > ¢) = P(|X, — X| > ¢/]a]).

Since X, = X the limp_oo P(|X, — X| > /|a]) = 0 so (by the Sandwich

Theorem, say) lim,_o P(]aX, — aX| > €) = 0 so that aX, P ax, as
claimed. O
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Theorem 5.1.4

Theorem 5.1.4. Suppose X, P, 2 and the real function g is continuous at
a. Then g(X,) Ll g(a).
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Theorem 5.1.4

Theorem 5.1.4. Suppose X, P, 2 and the real function g is continuous at
a. Then g(X,) Ll g(a).

Proof. Let € > 0 be given. Then since g is continuous at a, by the
definition of continuity there exists 4 > 0 such that if |x — a| < ¢ then
lg(x) — g(a)| < e. So for any x such that |g(x) — g(a)| > &, we must
have |x — a| > 0. Let C be the sample space on which the random
variables are defined. Then we have

{ceC|lg(Xn(c)) —g(a)l = e} € {c €C|[Xn(c) —a| = d}.
By Theorem 1.3.3, P is monotone so that
P({c e Clg(Xn(c)) — g(a)l Z e}) < P({c € C | [Xn(c) — a| = 6}).
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Theorem 5.1.4

Theorem 5.1.4. Suppose X, P, 2 and the real function g is continuous at
a. Then g(X,) Ll g(a).

Proof. Let € > 0 be given. Then since g is continuous at a, by the
definition of continuity there exists 4 > 0 such that if |x — a| < ¢ then
lg(x) — g(a)| < e. So for any x such that |g(x) — g(a)| > &, we must
have |x — a| > 0. Let C be the sample space on which the random
variables are defined. Then we have

{ceC|lg(Xn(c)) —g(a)l = e} € {c €C|[Xn(c) —a| = d}.
By Theorem 1.3.3, P is monotone so that
P({c e Clg(Xn(c)) — g(a)l Z e}) < P({c € C | [Xn(c) — a| = 6}).

Since X, = a, then limp_oo P({c € C | |Xn(c) —a] > ¢}) =0. So (by the

Sandwich Theorem, say) lim,_.o, P({c € C | |g(Xn(c)) — g(a)| > ¢}) =

limp—oo P(|g(Xn) — g(a)| > ¢) =0 and g(Xn) Ll g(a), as claimed. O
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Theorem 5.1.5

Theorem 5.1.5. Suppose X, = X and Y, > Y. Then X, Y, = XY
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Theorem 5.1.5

Theorem 5.1.5. Suppose X, = X and Y, > Y. Then X, Y, = XY

Proof. First, X, Y, = %X,? + %Y,? - %(X,, — Y,,)2.
We have by Theorem 5.1.2, Theorem 5.1.3, and Theorem 5.1.A that
1 1 1 p 1 1 1
XnYn = §X3 + §Y3 — 5 (X - Y,)? 5 5><2 + EY2 - 5(X= Y)? = XY.

That is, X, Y, L XY, as claimed. O

9/11
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Theorem 5.1.B

Theorem 5.1.B. Let X1, X5, ..., X, be a random sample from a
distribution of X with finite mean p and finite variance 02 where E[X*] is
finite, then the sample variance

1 _
52 = P > (X = Xa)?

i=1

(where X, = 37 | X;) is a consistent estimator of 2.
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Theorem 5.1.B

Theorem 5.1.B. Let X1, X5, ..., X, be a random sample from a
distribution of X with finite mean p and finite variance 02 where E[X*] is
finite, then the sample variance

1 _
52 = P > (X = Xa)?

i=1

(where X, = 37 | X;) is a consistent estimator of 2.

Proof. In Theorem 2.8.A we showed that S2 is an unbiased estimator of
o2 (that is, E[S?] = 02). Here we need to show the convergence in
probability. Since E[X*] is finite, then Var(52) < oo so that the
hypotheses of The Weak law of Large Numbers (Theorem 5.1.1) are
satisfied. By Theorem 5.1.1, Theorem 5.1.2, Theorem 5.1.3, Theorem
5.1.A, and the fact that lim,_ n/(n —1) =1, we have...
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Theorem 5.1.B

Theorem 5.1.B (continued)

Proof (continued).

1 n — 1 ! — )
sﬁ_n_lZ(x,-—xn)2 n_lz(x,.2—2x,-xn+xn)
i=1 i=1
n (1< 2X ) — 1, -
z X2 _z2n X+ =(nX,
n i =2\ P
p— (nZX,-2—Xn> = (1)(E[X?] = p?) = 0°.
i=1

(We could use more details here on why 1 37 | X2 LN E[X?]; these

details are to be given in Exercise 5.1.A.) That is, the sample variance S2
is a consistent estimator of the variance o2

, as claimed. ]

Mathematical Statistics 1 June 6,2021 11 /11



	Theorem 5.1.1. Weak Law of Large Numbers
	Theorem 5.1.2
	Theorem 5.1.3
	Theorem 5.1.4
	Theorem 5.1.5
	Theorem 5.1.B

