Mathematical Statistics 1

Chapter 5. Consistency and Limiting Distributions

5.1. Convergence in Probability—Proofs of Theorems

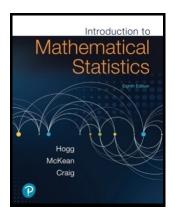


Table of contents

- 1 Theorem 5.1.1. Weak Law of Large Numbers
- Theorem 5.1.2
- Theorem 5.1.3
- Theorem 5.1.4
- Theorem 5.1.5
- Theorem 5.1.B

Theorem 5.1.1. Weak Law of Large Numbers.

Let $\{X_n\}$ be a sequence of independent and identically distributed ("idd") random variables having common mean $\mu < \infty$ and variance $\sigma^2 < \infty$. Let $\overline{X}_n = (\sum_{i=1}^n X_i) / n$ (this is the *sample mean*). Then $\overline{X}_n \stackrel{P}{\to} \mu$.

Proof. By Theorem 2.8.1, $E(\overline{X}_n) = \sum_{i=1}^n \mu/n = \mu$. By Corollary 2.8.2, $Var(\overline{X}_n) = \sum_{i=1}^n \sigma^2/n^2 = \sigma^2/n$. So by Chebychev's Inequality (Theorem 1.10.3; see Note 1.10.A), we have for every $\varepsilon > 0$

$$P(|\overline{X}_n - \mu| \ge \varepsilon) = P\left(|\overline{X}_n - \mu| \ge \frac{\varepsilon \sqrt{n}}{\sigma} \frac{\sigma}{\sqrt{n}}\right) \le \frac{\operatorname{Var}(\overline{X}_n)}{\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2}.$$

Mathematical Statistics 1

Theorem 5.1.1. Weak Law of Large Numbers.

Let $\{X_n\}$ be a sequence of independent and identically distributed ("idd") random variables having common mean $\mu < \infty$ and variance $\sigma^2 < \infty$. Let $\overline{X}_n = (\sum_{i=1}^n X_i) / n$ (this is the sample mean). Then $\overline{X}_n \stackrel{P}{\to} \mu$.

Proof. By Theorem 2.8.1, $E(\overline{X}_n) = \sum_{i=1}^n \mu/n = \mu$. By Corollary 2.8.2, $Var(\overline{X}_n) = \sum_{i=1}^n \sigma^2/n^2 = \sigma^2/n$. So by Chebychev's Inequality (Theorem 1.10.3; see Note 1.10.A), we have for every $\varepsilon > 0$

$$P(|\overline{X}_n - \mu| \ge \varepsilon) = P\left(|\overline{X}_n - \mu| \ge \frac{\varepsilon\sqrt{n}}{\sigma} \frac{\sigma}{\sqrt{n}}\right) \le \frac{\operatorname{Var}(\overline{X}_n)}{\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2}.$$

For given $\varepsilon > 0$, $\lim_{n \to \infty} \frac{\sigma^2}{n\varepsilon^2} = 0$ and so (by the Sandwich Theorem, say)

$$\lim_{n\to\infty} P(|\overline{X}_n-\mu|\geq \varepsilon)\to 0) \text{ and } \lim_{n\to\infty} P|\overline{X}_n-\mu|<\varepsilon)=0.$$

Since $\varepsilon > 0$ is arbitrary, we have that $\overline{X}_n \stackrel{P}{\to} \mu$, as claimed.

Theorem 5.1.1. Weak Law of Large Numbers.

Let $\{X_n\}$ be a sequence of independent and identically distributed ("idd") random variables having common mean $\mu < \infty$ and variance $\sigma^2 < \infty$. Let $\overline{X}_n = \left(\sum_{i=1}^n X_i\right)/n$ (this is the *sample mean*). Then $\overline{X}_n \stackrel{P}{\to} \mu$.

Proof. By Theorem 2.8.1, $E(\overline{X}_n) = \sum_{i=1}^n \mu/n = \mu$. By Corollary 2.8.2, $Var(\overline{X}_n) = \sum_{i=1}^n \sigma^2/n^2 = \sigma^2/n$. So by Chebychev's Inequality (Theorem 1.10.3; see Note 1.10.A), we have for every $\varepsilon > 0$

$$P(|\overline{X}_n - \mu| \ge \varepsilon) = P\left(|\overline{X}_n - \mu| \ge \frac{\varepsilon\sqrt{n}}{\sigma} \frac{\sigma}{\sqrt{n}}\right) \le \frac{\mathsf{Var}(\overline{X}_n)}{\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2}.$$

For given $\varepsilon > 0$, $\lim_{n \to \infty} \frac{\sigma^2}{n\varepsilon^2} = 0$ and so (by the Sandwich Theorem, say)

$$\lim_{n\to\infty} P(|\overline{X}_n-\mu|\geq \varepsilon)\to 0) \text{ and } \lim_{n\to\infty} P|\overline{X}_n-\mu|<\varepsilon)=0.$$

Since $\varepsilon > 0$ is arbitrary, we have that $\overline{X}_n \stackrel{P}{\to} \mu$, as claimed.

Ш

Theorem 5.1.2. Suppose $X_n \stackrel{P}{\rightarrow} X$ and $Y_n \stackrel{P}{\rightarrow} Y$. Then $X_n + Y_n \stackrel{P}{\rightarrow} X + Y$.

Proof. Let $\varepsilon > 0$ be given. Let $\mathcal C$ be the sample space on which the random variables are defined. Then for each $c \in \mathcal C$ we have by the Triangle Inequality on $\mathbb R$ that

$$|(X_n(c) + Y_n(c)) = (X(c) + Y(c))| \le |X_n(c) - X(c)| + |Y_n(c) - Y(c)|.$$

So

$$\{c \in \mathcal{C} \mid (X_n(c) + Y_n(c)) - (X(c) + Y(c))| \ge \varepsilon\}$$

$$\subseteq \{c \in \mathcal{C} \mid |X_n(c) - X(c)| + |Y_n(c) - Y(c)| \ge \varepsilon\}.$$

Theorem 5.1.2. Suppose $X_n \stackrel{P}{\rightarrow} X$ and $Y_n \stackrel{P}{\rightarrow} Y$. Then $X_n + Y_n \stackrel{P}{\rightarrow} X + Y$.

Proof. Let $\varepsilon>0$ be given. Let $\mathcal C$ be the sample space on which the random variables are defined. Then for each $c\in\mathcal C$ we have by the Triangle Inequality on $\mathbb R$ that

$$|(X_n(c) + Y_n(c)) = (X(c) + Y(c))| \le |X_n(c) - X(c)| + |Y_n(c) - Y(c)|.$$

So

$$\{c \in \mathcal{C} \mid (X_n(c) + Y_n(c)) - (X(c) + Y(c))| \ge \varepsilon\}$$

$$\subseteq \{c \in \mathcal{C} \mid |X_n(c) - X(c)| + |Y_n(c) - Y(c)| \ge \varepsilon\}.$$

Theorem 5.1.2 (continued 1)

Proof (continued). By Theorem 1.3.3, *P* is monotone so that

$$P(|(X_n + Y_n) - (X + Y)| \ge \varepsilon)$$

$$= P(\{c \in C \mid (X_n(c) + Y_n(c)) - (X(c) + Y(c))| \ge \varepsilon\})$$

$$\le P(\{c \in C \mid |X_n(c) - X(c)| + |Y_n(c) - Y(c)| \ge \varepsilon\})$$

$$= P(|X_n - X| + |Y_n - Y| \ge \varepsilon). \quad (*)$$

Now for any $c \in \mathcal{C}$ such that $|X_n(c) - X(c)| + |Y_n(c) - Y(c)| \ge \varepsilon$, we must have either $X_n(c) - X(c)| \ge \varepsilon/2$ or $|Y_n - Y(c)| \ge \varepsilon/2$. That is,

$$\{c \in \mathcal{C} \mid |X_n(c) - X(c)| + |Y_n(c) - Y(c)| \ge \varepsilon\}$$

$$\subseteq \{c \in \mathcal{C} \mid |X_n(c) - X(c)| \ge \varepsilon/2\} \cup \{c \in \mathcal{C} \mid |Y_n(c) = Y(c)| \ge \varepsilon/2\}.$$

5 / 11

Theorem 5.1.2 (continued 1)

Proof (continued). By Theorem 1.3.3, *P* is monotone so that

$$P(|(X_n + Y_n) - (X + Y)| \ge \varepsilon)$$

$$= P(\{c \in C \mid (X_n(c) + Y_n(c)) - (X(c) + Y(c))| \ge \varepsilon\})$$

$$\le P(\{c \in C \mid |X_n(c) - X(c)| + |Y_n(c) - Y(c)| \ge \varepsilon\})$$

$$= P(|X_n - X| + |Y_n - Y| \ge \varepsilon). \quad (*)$$

Now for any $c \in \mathcal{C}$ such that $|X_n(c) - X(c)| + |Y_n(c) - Y(c)| \ge \varepsilon$, we must have either $X_n(c) - X(c)| \ge \varepsilon/2$ or $|Y_n - Y(c)| \ge \varepsilon/2$. That is,

$$\{c \in \mathcal{C} \mid |X_n(c) - X(c)| + |Y_n(c) - Y(c)| \ge \varepsilon\}$$

$$\subseteq \{c \in \mathcal{C} \mid |X_n(c) - X(c)| \ge \varepsilon/2\} \cup \{c \in \mathcal{C} \mid |Y_n(c) = Y(c)| \ge \varepsilon/2\}.$$

Mathematical Statistics 1

5 / 11

Theorem 5.1.2 (continued 2)

Proof (continued). So by Theorem 1.3.3 (monotonicity or P) and Theorem 1.3.5 (which implies $P(A \cup B) \leq P(A) + P(B)$; this is called *subadditivity* in measure theory),

$$P(|X_{n} - X| + |Y_{n} - Y| \ge \varepsilon))$$

$$= P(\{c \in C \mid |X_{n}(c) - X(c)| + |Y_{n}(c) - Y(c)| \ge \varepsilon\})$$

$$\le P(\{c \in C \mid |X_{n}(c) - X(c)| \ge \varepsilon/2\}) + P(\{c \in C \mid |Y_{n}(c) - Y(c)| \ge \varepsilon/2\})$$

$$= P(|X_{n} - X| \ge \varepsilon/2) + P(|Y_{n} - Y| \ge \varepsilon/2).$$

Combining this with (*) we have

$$P(|X_n+Y_n|-|X+Y|)\geq \varepsilon)\leq P(|X_n-X|\geq \varepsilon/2)+P(|Y_n-Y|\geq \varepsilon/2).$$

Since $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$ then

$$\lim_{n\to\infty} P(|X_n-X|\geq \varepsilon/2) = 0 \text{ and } \lim_{n\to\infty} P(|Y_n-Y|\geq \varepsilon/2) = 0.$$

So
$$\lim_{n\to\infty} P(|X_n+Y_n|-|X+Y|)\geq \varepsilon)=0$$
 and $X_n+Y_n\stackrel{P}{\to} X+Y$. \square

Mathematical Statistics 1 June 6, 2021 6 / 11

Theorem 5.1.2 (continued 2)

Proof (continued). So by Theorem 1.3.3 (monotonicity or P) and Theorem 1.3.5 (which implies $P(A \cup B) \leq P(A) + P(B)$; this is called subadditivity in measure theory),

$$P(|X_{n} - X| + |Y_{n} - Y| \ge \varepsilon))$$

$$= P(\{c \in C \mid |X_{n}(c) - X(c)| + |Y_{n}(c) - Y(c)| \ge \varepsilon\})$$

$$\le P(\{c \in C \mid |X_{n}(c) - X(c)| \ge \varepsilon/2\}) + P(\{c \in C \mid |Y_{n}(c) - Y(c)| \ge \varepsilon/2\})$$

$$= P(|X_{n} - X| \ge \varepsilon/2) + P(|Y_{n} - Y| \ge \varepsilon/2).$$

Combining this with (*) we have

$$P(|X_n + Y_n| - |X + Y|) \ge \varepsilon) \le P(|X_n - X| \ge \varepsilon/2) + P(|Y_n - Y| \ge \varepsilon/2).$$

Since $X_n \stackrel{P}{\to} X$ and $Y_n \stackrel{P}{\to} Y$ then

$$\lim_{n\to\infty} P(|X_n-X|\geq \varepsilon/2) = 0 \text{ and } \lim_{n\to\infty} P(|Y_n-Y|\geq \varepsilon/2) = 0.$$

So $\lim_{n\to\infty} P(|X_n+Y_n|-|X+Y|)\geq \varepsilon)=0$ and $X_n+Y_n\stackrel{P}{\to} X+Y$.

Theorem 5.1.3. Suppose $X_n \stackrel{P}{\to} X$ and a is a constant. Then $aX_n \stackrel{P}{\to} aX$.

Proof. First, the result holds trivially if a=0 so we can suppose without loss of generality that $a \neq 0$. We have

$$P(|aX_n - aX| \ge \varepsilon) = P(|a||X - X_n| \ge \varepsilon) = P(|X_n - X| \ge \varepsilon/|a|).$$

Since $X_n \stackrel{P}{\to} X$ the $\lim_{n\to\infty} P(|X_n-X| \ge \varepsilon/|a|) = 0$ so (by the Sandwich Theorem, say) $\lim_{n\to\infty} P(|aX_n-aX| \ge \varepsilon) = 0$ so that $aX_n \stackrel{P}{\to} aX$, as claimed.

Theorem 5.1.3. Suppose $X_n \stackrel{P}{\to} X$ and a is a constant. Then $aX_n \stackrel{P}{\to} aX$.

Proof. First, the result holds trivially if a = 0 so we can suppose without loss of generality that $a \neq 0$. We have

$$P(|aX_n - aX| \ge \varepsilon) = P(|a||X - X_n| \ge \varepsilon) = P(|X_n - X| \ge \varepsilon/|a|).$$

Since $X_n \stackrel{P}{\to} X$ the $\lim_{n\to\infty} P(|X_n-X| \ge \varepsilon/|a|) = 0$ so (by the Sandwich Theorem, say) $\lim_{n\to\infty} P(|aX_n-aX| \ge \varepsilon) = 0$ so that $aX_n \stackrel{P}{\to} aX$, as claimed.

Theorem 5.1.4. Suppose $X_n \stackrel{P}{\to} a$ and the real function g is continuous at a. Then $g(X_n) \stackrel{P}{\to} g(a)$.

Proof. Let $\varepsilon > 0$ be given. Then since g is continuous at a, by the definition of continuity there exists $\delta > 0$ such that if $|x - a| < \delta$ then $|g(x) - g(a)| < \varepsilon$. So for any x such that $|g(x) - g(a)| \ge \varepsilon$, we must have $|x - a| \ge \delta$. Let $\mathcal C$ be the sample space on which the random variables are defined. Then we have

$$\{c \in \mathcal{C} \mid |g(X_n(c)) - g(a)| \ge \varepsilon\} \subseteq \{c \in \mathcal{C} \mid |X_n(c) - a| \ge \delta\}.$$

By Theorem 1.3.3, P is monotone so that

$$P(\lbrace c \in \mathcal{C} \mid |g(X_n(c)) - g(a)| \geq \varepsilon \rbrace) \leq P(\lbrace c \in \mathcal{C} \mid |X_n(c) - a| \geq \delta \rbrace).$$

Theorem 5.1.4. Suppose $X_n \stackrel{P}{\rightarrow} a$ and the real function g is continuous at a. Then $g(X_n) \stackrel{P}{\to} g(a)$.

Proof. Let $\varepsilon > 0$ be given. Then since g is continuous at a, by the definition of continuity there exists $\delta > 0$ such that if $|x - a| < \delta$ then $|g(x) - g(a)| < \varepsilon$. So for any x such that $|g(x) - g(a)| \ge \varepsilon$, we must have $|x-a| \geq \delta$. Let C be the sample space on which the random variables are defined. Then we have

$$\{c \in \mathcal{C} \mid |g(X_n(c)) - g(a)| \ge \varepsilon\} \subseteq \{c \in \mathcal{C} \mid |X_n(c) - a| \ge \delta\}.$$

By Theorem 1.3.3, P is monotone so that

$$P(\{c \in \mathcal{C} \mid |g(X_n(c)) - g(a)| \ge \varepsilon\}) \le P(\{c \in \mathcal{C} \mid |X_n(c) - a| \ge \delta\}).$$

Since $X_n \stackrel{P}{\to} a$, then $\lim_{n\to\infty} P(\{c \in \mathcal{C} \mid |X_n(c) - a| \geq \delta\}) = 0$. So (by the Sandwich Theorem, say) $\lim_{n\to\infty} P(\{c\in\mathcal{C}\mid |g(X_n(c))-g(a)|\geq \varepsilon\}) =$ $\lim_{n\to\infty} P(|g(X_n)-g(a)|>\varepsilon)=0$ and $g(X_n)\overset{P}{\to}g(a)$, as claimed.

Theorem 5.1.4. Suppose $X_n \stackrel{P}{\to} a$ and the real function g is continuous at a. Then $g(X_n) \stackrel{P}{\to} g(a)$.

Proof. Let $\varepsilon>0$ be given. Then since g is continuous at a, by the definition of continuity there exists $\delta>0$ such that if $|x-a|<\delta$ then $|g(x)-g(a)|<\varepsilon$. So for any x such that $|g(x)-g(a)|\geq\varepsilon$, we must have $|x-a|\geq\delta$. Let $\mathcal C$ be the sample space on which the random variables are defined. Then we have

$$\{c \in \mathcal{C} \mid |g(X_n(c)) - g(a)| \ge \varepsilon\} \subseteq \{c \in \mathcal{C} \mid |X_n(c) - a| \ge \delta\}.$$

By Theorem 1.3.3, P is monotone so that

$$P(\{c \in \mathcal{C} \mid |g(X_n(c)) - g(a)| \ge \varepsilon\}) \le P(\{c \in \mathcal{C} \mid |X_n(c) - a| \ge \delta\}).$$

Since $X_n \stackrel{P}{\to} a$, then $\lim_{n\to\infty} P(\{c \in \mathcal{C} \mid |X_n(c) - a| \ge \delta\}) = 0$. So (by the Sandwich Theorem, say) $\lim_{n\to\infty} P(\{c \in \mathcal{C} \mid |g(X_n(c)) - g(a)| \ge \varepsilon\}) = \lim_{n\to\infty} P(|g(X_n) - g(a)| \ge \varepsilon) = 0$ and $g(X_n) \stackrel{P}{\to} g(a)$, as claimed.

Mathematical Statistics 1

Theorem 5.1.5. Suppose $X_n \stackrel{P}{\to} X$ and $Y_n \stackrel{P}{\to} Y$. Then $X_n Y_n \stackrel{P}{\to} XY$.

Proof. First,
$$X_n Y_n = \frac{1}{2} X_n^2 + \frac{1}{2} Y_n^2 - \frac{1}{2} (X_n - Y_n)^2$$
.

We have by Theorem 5.1.2, Theorem 5.1.3, and Theorem 5.1.A that

$$X_nY_n = \frac{1}{2}X_n^2 + \frac{1}{2}Y_n^2 - \frac{1}{2}(X_n - Y_n)^2 \overset{P}{\to} \frac{1}{2}X^2 + \frac{1}{2}Y^2 - \frac{1}{2}(X - Y)^2 = XY.$$

That is, $X_n Y_n \stackrel{P}{\to} XY$, as claimed.

Theorem 5.1.5. Suppose $X_n \stackrel{P}{\to} X$ and $Y_n \stackrel{P}{\to} Y$. Then $X_n Y_n \stackrel{P}{\to} XY$.

Proof. First,
$$X_n Y_n = \frac{1}{2} X_n^2 + \frac{1}{2} Y_n^2 - \frac{1}{2} (X_n - Y_n)^2$$
.

We have by Theorem 5.1.2, Theorem 5.1.3, and Theorem 5.1.A that

$$X_nY_n = \frac{1}{2}X_n^2 + \frac{1}{2}Y_n^2 - \frac{1}{2}(X_n - Y_n)^2 \overset{P}{\to} \frac{1}{2}X^2 + \frac{1}{2}Y^2 - \frac{1}{2}(X - Y)^2 = XY.$$

That is, $X_n Y_n \xrightarrow{P} XY$, as claimed.

Theorem 5.1.B. Let X_1, X_2, \ldots, X_n be a random sample from a distribution of X with finite mean μ and finite variance σ^2 where $E[X^4]$ is finite, then the sample variance

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

(where $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$) is a consistent estimator of σ^2 .

Proof. In Theorem 2.8.A we showed that S_n^2 is an unbiased estimator of σ^2 (that is, $E[S^2] = \sigma^2$). Here we need to show the convergence in probability. Since $E[X^4]$ is finite, then $Var(S^2) < \infty$ so that the hypotheses of The Weak law of Large Numbers (Theorem 5.1.1) are satisfied. By Theorem 5.1.1, Theorem 5.1.2, Theorem 5.1.3, Theorem 5.1.A, and the fact that $\lim_{n\to\infty} n/(n-1) = 1$, we have...

Theorem 5.1.B. Let X_1, X_2, \ldots, X_n be a random sample from a distribution of X with finite mean μ and finite variance σ^2 where $E[X^4]$ is finite, then the sample variance

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

(where $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$) is a consistent estimator of σ^2 .

Proof. In Theorem 2.8.A we showed that S_n^2 is an unbiased estimator of σ^2 (that is, $E[S^2] = \sigma^2$). Here we need to show the convergence in probability. Since $E[X^4]$ is finite, then $\text{Var}(S^2) < \infty$ so that the hypotheses of The Weak law of Large Numbers (Theorem 5.1.1) are satisfied. By Theorem 5.1.1, Theorem 5.1.2, Theorem 5.1.3, Theorem 5.1.A, and the fact that $\lim_{n \to \infty} n/(n-1) = 1$, we have...

Theorem 5.1.B (continued)

Proof (continued).

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i^2 - 2X_i \overline{X}_n + \overline{X}_n^2)$$

$$= \frac{n}{n-1} \left(\frac{1}{n} \sum_{i=1}^n X_i^2 - \frac{2\overline{X}_n}{n} \sum_{i=1}^n X_i + \frac{1}{n} (n\overline{X}_n) \right)$$

$$= \frac{n}{n-1} \left(\frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}_n^2 \right) \xrightarrow{P} (1) (E[X^2] - \mu^2) = \sigma^2.$$

(We could use more details here on why $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\overset{P}{\to}E[X^{2}]$; these details are to be given in Exercise 5.1.A.) That is, the sample variance S_{n}^{2} is a consistent estimator of the variance σ^{2} , as claimed.