Mathematical Statistics 1

Chapter 5. Consistency and Limiting Distributions

5.2. Convergence in Distribution—Proofs of Theorems

Mathematical Statistics 1

June 6, 2021

Theorem 5.2.1

Theorem 5.2.1. If sequence of random variables (X_n) converges to X in probability, then (X_n) converges to X in distribution.

Proof. Let x be a point of continuity of the cumulative distribution function $F_X(x)$ and let $\varepsilon > 0$. Then

$$F_{X_n}(x) = P(X_n \le x)$$

$$= P((X_n \le x) \cap (\{|X_n - X| < \varepsilon\} \cup \{|X_n - X| \ge \varepsilon\}))$$

$$= P(X_n \le x) \cap \{|X_n - X| < \varepsilon\} + P(X_n \le x) \cap \{|X_n - X| \ge \varepsilon\})$$

$$\le P(X_n \le x) \cap \{|X_n - X| < \varepsilon\} + P(|X_n - X| \ge \varepsilon)$$

$$= P(X_n \le x) \cap \{-\varepsilon < X_n - X < \varepsilon\})$$

$$+P((X_n \le x) \cap \{|X_n - X| \ge \varepsilon\})$$

$$\le P((X_n \le x) \cap \{X - X_n < \varepsilon\}) + P(|X_n - X| \ge \varepsilon)$$

$$\le P(X \le x + \varepsilon) + P(|X_n - X| \ge \varepsilon) \text{ since } X_n \le x \text{ and } X - X_n < \varepsilon \text{ together imply } X \le X_n + \varepsilon \le x + \varepsilon.$$

Mathematical Statistics 1

Theorem 5.2.1 (continued 1)

Proof (continued). Since $X_n \stackrel{P}{\to} X$ then be definition

$$\lim_{n\to\infty} P(|X_n-|\geq \varepsilon)=0$$
, so

$$\overline{\lim}_{n \to \infty} F_n \le \overline{\lim}_{n \to \infty} P(|X \le x + \varepsilon) + P(|X_n - X| \ge \varepsilon))$$

$$= \overline{\lim}_{n \to \infty} P(X \le x + \varepsilon) + \overline{\lim}_{n \to \infty} P(|X_n - X| \ge \varepsilon)$$

$$= P(X \le x + \varepsilon) + 0 = F_X(x + \varepsilon). \tag{5.2.5}$$

Similarly,

$$P(X_{n} > x) = P((X_{n} > x) \cap (\{|X_{n} - X| < \varepsilon\} \cup \{|X_{n} - X| \ge \varepsilon\}))$$

$$= P((X_{n} > x) \cap \{|X_{n} - X| < \varepsilon\})$$

$$+P((X_{n} > x) \cap \{|X_{n} - X| \ge \varepsilon\})$$

$$\leq P((X_{n} > x) \cap \{|X_{n} - X| < \varepsilon\}) + P(|X_{n} - X| \ge \varepsilon)$$

$$= P((X_{n} > x) \cap \{-\varepsilon < X_{n} - X < \varepsilon\})$$

$$+P((X_{n} > x) \cap \{|X_{n} - X| \ge \varepsilon\})...$$

Theorem 5.2.1 (continued 2)

Proof (continued). ...

Therefore.

$$\frac{\lim_{n\to\infty} (1 - F_{X_n}(x))}{1 - \lim_{n\to\infty} (-F_{X_n}(x))} = 1 - \overline{\lim_{n\to\infty} F_{X_n}(x)}$$

$$= \overline{\lim_{n\to\infty} (1 - F_{X_n}(x))} = \overline{\lim_{n\to\infty} F(X_n > x)}$$

$$\leq \overline{\lim_{n\to\infty} (F(X \ge x - \varepsilon) + F(|X_n - X| \ge \varepsilon))}$$

$$= \overline{\lim_{n\to\infty} F(X \ge x - \varepsilon)} + \overline{\lim_{n\to\infty} F(|X_n - X| \ge \varepsilon)}$$

$$= F(X \ge x - \varepsilon) + 0 = 1 - F_X(x - \varepsilon). \quad (5.2.6)$$

June 6, 2021 3 / 14

Theorem 5.2.1 (continued 3)

Theorem 5.2.1. If sequence of random variables (X_n) converges to X in probability, then (X_n) converges to X in distribution.

Proof (continued). Combining (5.2.5) and (5.2.6), we get

$$F_X(x-\varepsilon) \leq \underline{\lim_{n\to\infty}} F_{X_n}(x) \leq \overline{\lim_{n\to\infty}} F_{X_n}(x) \leq F_X(x+\varepsilon).$$

Since $\varepsilon > 0$ is arbitrary and since x is a point of continuity of F_X then we must have

$$\lim_{n\to\infty} F_{X_n}(x) \text{ exists and } \lim_{n\to\infty} F_{X_n}(x) = F_X(x).$$

Since x is an arbitrary element of $C(F_X)$, then X_n converges in distribution to X (by definition), as claimed.

Mathematical Statistics 1

Theorem 5.2.6

Theorem 5.2.6. Let (X_n) be a sequence of random variables and let X be a random variable. If $X_n \to X$ in distribution, then (X_n) is bounded in probability.

Proof. Consider the cumulative distribution functions F_{X_n} and F_X . Let $\varepsilon > 0$ be given and choose η so that η and $-\eta$ are continuity points of F_X and $P(|X| \le \eta) \ge 1 - \varepsilon$, as described in equation (5.2.7). Now

$$\lim_{n\to\infty} P(|X_n| \le \eta) = \lim_{n\to\infty} (F_{X_n}(\eta) - F_{X_n}(-\eta) + P(X_n = -\eta)) \text{ by (5.2.7)}$$

$$\ge \lim_{n\to\infty} F_{X_n}(\eta) - \lim_{n\to\infty} F_{X_n}(-\eta) + 0$$

$$= F_X(\eta) - F_X(-\eta) \text{ since } X_n \xrightarrow{D} X$$

$$> 1 - \varepsilon \text{ by (5.2.7)}.$$

So with $B_{\varepsilon}=\eta$ there exists $N_{\varepsilon}\in\mathbb{N}$ such that for all $\eta\geq N_{\varepsilon}$ we have $P(|X_n| \le X_{\varepsilon}) \ge 1 - \varepsilon$ and so (X_n) is bounded in probability, as claimed.

Theorem 5.2.2

Theorem 5.2.2. If sequence of random variables (X_n) converges to constant b in distribution, then (X_n) converges to b in probability.

Proof. Let $\varepsilon > 0$. Since $X_n \stackrel{D}{\to} b$ by hypothesis then $\lim_{n\to\infty} F_{X_n}(x) = F_X(x) = b$ for all $x \in C(F_X)$. So

$$\lim_{n\to\infty} P(|X_n-b|\leq \varepsilon) = \lim_{n\to\infty} P(-\varepsilon\leq X_n-b\leq \varepsilon)$$

$$= \lim_{n \to \infty} P(b - \varepsilon \le X_n \le b + \varepsilon) = \lim_{n \to \infty} (P(X_n \le b + \varepsilon) - P(X_n < b - \varepsilon))$$

$$= \lim_{n\to\infty} \left(P(X_n \leq b + \varepsilon) - P(X_n \leq b - \varepsilon) + P(X_n - b - \varepsilon) \right)$$

$$= \lim_{n\to\infty} F_{X_n}(b+\varepsilon) = \lim_{n\to\infty} F_{X_n}(b-\varepsilon) + \lim_{n\to\infty} P(X_n = b - \varepsilon)$$

$$= 1 - 0 + \lim_{n \to \infty} P(X_n = b - \varepsilon)$$
 since $\lim_{n \to \infty} F_{X_n}(x) = b$

= 1 since a limit of probabilities must be at most 1.

(Notice that we must have $\lim_{n\to\infty} P(X=b-\varepsilon)=0$). Therefore, by definition, $X_n \stackrel{P}{\to} b$, as claimed.

Mathematical Statistics 1

Theorem 5.2.7

Theorem 5.2.7. Let (X_n) be a sequence of random variables which is bounded in probability and let (Y_n) be a sequence of random variables that converges to 0 in probability. Then $X_n Y_n \stackrel{P}{\to} 0$.

Proof. Since $\varepsilon > 0$. Since (X_n) is bounded in probability by hypothesis then there exists $B_{\varepsilon} > 0$ and $N_{\varepsilon} \in \mathbb{N}$ such that

$$n \geq N_{\varepsilon}$$
 implies $P(|X_n| \leq B_{\varepsilon}) \geq 1 - \varepsilon$.

Then

$$\overline{\lim_{n\to\infty}}P(|X_nY_n|\geq\varepsilon)=\overline{\lim_{n\to\infty}}P\left((|X_nY_N|\geq\varepsilon)\cap(|X_n|\leq B_\varepsilon)\cup(|X_n|>B_\varepsilon)\right)$$

$$=\overline{\lim_{n\to\infty}}\left(P((|X_nY_n|\geq\varepsilon)\cap(|X_n|\leq B_\varepsilon))+P((|X_nY_n|\geq\varepsilon)\cap(|X_n|>B_\varepsilon))\right)$$

$$\leq \overline{\lim_{n\to\infty}} P((|X_nY_n| \geq \varepsilon) \cap (|X_n| \leq B_{\varepsilon})) + \overline{\lim_{n\to\infty}} P((|X_nY_n| \geq \varepsilon) \cap (|X_n| > B_{\varepsilon}))$$

June 6, 2021

Proof (continued). ...

$$\leq \overline{\lim_{n\to\infty}} P((|X_nY_n| \geq \varepsilon) \cap (|X_n| \leq B_\varepsilon)) + \overline{\lim_{n\to\infty}} P((|X_nY_n| \geq \varepsilon) \cap (|X_n| > B_\varepsilon))$$

- $\leq \overline{\lim_{n\to\infty}} P(|Y_n| \geq \varepsilon/B_{\varepsilon}) + \overline{\lim_{n\to\infty}} P(|X_n| > B_{\varepsilon}) \text{ since } |X_n| > B_{\varepsilon} \text{ implies}$ $1/|X_n| < 1/B_{\varepsilon} \text{ so that } P(|X_nY_n| \geq \varepsilon) = P(|Y_n| \geq \varepsilon/|X_n|)$ $\geq P(|Y_n| \geq \varepsilon/B_{\varepsilon}) \text{ since } \varepsilon/B_{\varepsilon} > \varepsilon/|X_n|$
- $\leq \overline{\lim_{n \to \infty}} P(|Y_n| \geq \varepsilon/B_{\varepsilon} \text{ since } P(|X_n| \leq B_{\varepsilon}) \geq 1 \varepsilon$ $\text{implies } \varepsilon \geq 1 P(|X_n| \leq B_{\varepsilon}) = P(|X_n| > B_{\varepsilon})$
- $= 0 + \varepsilon = \varepsilon \text{ since } Y_N \stackrel{P}{\to} 0.$

So $\overline{\lim}_{n\to\infty} P(|X_nY_n| \ge \varepsilon) = 0$ and, since $P(|X_nY_n| \ge \varepsilon) \ge 0$, then $\underline{\lim}_{n\to\infty} P(|X_nY_n| \ge \varepsilon) = 0$. Hence $\lim_{n\to\infty} P(|X_nY_n| \ge \varepsilon) = 0$ so that, by definition of convergence in probability, $X_nY_n \stackrel{P}{\to} 0$, as claimed.

Mathematical Statistics 1

Theorem 5.2.8 (continued)

Theorem 5.2.8. Suppose sequence of random variables (Y_n) is bounded in probability. Suppose $X_n = o_n(Y_n)$. Then $X_n \stackrel{P}{\to} 0$ as $n \to \infty$.

Proof (continued). ...

$$P(|X_n| \ge \varepsilon) \le P(|X_n|/Y_n| \ge \varepsilon/B_{\varepsilon'}) + P(|Y_n| > B_{\varepsilon'})$$

$$< \varepsilon'/2 + (1 - P(|Y_n| \le B_{\varepsilon'})) < \varepsilon'/2 + (1 - (1 - \varepsilon'/2))$$

$$= \varepsilon'/2 + \varepsilon'/2 = \varepsilon'.$$

Since $\varepsilon' > 0$ is arbitrary, then $\lim_{n \to \infty} P(|X_n| \ge \varepsilon) = 0$ and so $X_n \stackrel{P}{\to} 0$ as $n \to \infty$, as claimed.

Theorem 5.2.8

Theorem 5.2.8

Theorem 5.2.8. Suppose sequence of random variables (Y_n) is bounded in probability. Suppose $X_n = o_p(Y_n)$. Then $X_n \stackrel{P}{\to} 0$ as $n \to \infty$.

Proof. Let $\varepsilon > 0$ and let $\varepsilon' > 0$. Since (Y_n) is bounded in probability by hypothesis, then (by definition) there events $N_{\varepsilon'} \in \mathbb{N}$ and $B_{\varepsilon'} > 0$ such that if $n \geq N_{\varepsilon'}$ then $P(|Y_n| \leq B_{\varepsilon'}) \geq a - \varepsilon'/2$. Also, since $X_n = o_p(Y_n)$ by hypothesis then (by definition) $X_n/Y_n \stackrel{P}{\to} 0$ as $n \to \infty$; that is, $\lim_{n \to \infty} P(|S_n/Y_n| \geq \varepsilon) = 0$. So there is $N_1 \in \mathbb{N}$ such that for all $n \geq N_1$ we have $P(|X_n/Y_n| \geq \varepsilon/B_{\varepsilon'}) < \varepsilon'/2$. Let $N = \max\{N_{\varepsilon'}, N_1\}$. Then for $n \geq N$ we have

$$P(|X_n| \ge \varepsilon) = P((|X_n| \ge \varepsilon) \cap ((|Y_n| \le B_{\varepsilon'}) \cap (|Y_n| > B_{\varepsilon'}))$$

$$= P((|X_n| \ge \varepsilon) \cap (|Y_n| \le B_{\varepsilon'})) + P((|X_n| \ge \varepsilon) \cap (|Y_n| > B_{\varepsilon'}))$$

$$\le P(|X_n|/Y_n| \ge \varepsilon/B_{\varepsilon'}) + P(|Y_n| > B_{\varepsilon'}) \text{ since } |X_n| \ge \varepsilon$$
and $|Y_n| \le B_{\varepsilon'} \text{ implies } |X_n/Y_n| \ge \varepsilon/B_{\varepsilon'}$

Mathematical Statistics 1

Theorem 5.2.9

Theorem 5.2.9. Let (X_n) be a sequence of random variables which that $\sqrt{n}(X_n - \theta) \stackrel{D}{\to} N(0, \sigma^2)$. Suppose the function g(x) is differentiable at θ and $g'(\theta) \neq 0$. Then

$$\sqrt{n}(g(X_n)-g(\theta))\stackrel{D}{\to} N(0,\sigma^2(g'(\theta))^2).$$

Proof. By "Theorem 5.2.A. A General Mean Value Theorem" we have

$$g(X_n) = g(\theta) + g'(\theta)(X_n - \theta) + o_p(|X_n - \theta|),$$

or

$$g(X_n) - g(\theta) = g'(\theta)(X_n - \theta) + o_p(|X_n - \theta|)$$

or

$$\sqrt{n}g(X_n) - \sqrt{n}g(\theta) = g'(\theta)\sqrt{n}(X_n - \theta) + \sqrt{n}o_p(|X_n - \theta|).$$

Now $Y_n = o_p(X_n)$ means $Y_n/X_n \stackrel{P}{\to} 0$ as $n \to \infty$ (or $\lim_{n \to \infty} P(|Y_n/X_n| \ge \varepsilon) = 0$), so $Y_n = o_p(\sqrt{n}X_n)$ since $\lim_{n \to \infty} P(|Y_n/(\sqrt{n}X_n)| \ge \varepsilon) = 0$.

June 6, 2021

June 6, 2021 11 / 14

Theorem 5.2.9 (continued)

Proof (continued). Hence

$$\sqrt{n}g(X_n) - \sqrt{n}g(\theta) = g'(\theta)\sqrt{n}(X_n - \theta) + o_p(\sqrt{n}|X_n - \theta|).$$

Since $\sqrt{n}(X_n-\theta)\stackrel{D}{\to} N(0,\sigma^2)$, then by Theorem 5.2.6 $\sqrt{n}(X_n-\theta)$ is bounded in probability and hence so is $\sqrt{n}|X_n-\theta|$. By Theorem 5.2.8 (since $\sqrt{n}|X_n=\theta|$ is bounded in probability) then $o_p(\sqrt{n}|X_n-\theta|)\stackrel{P}{\to} 0$ as $n\to\infty$ which, by Theorem 5.2.1. Therefore,

$$\sqrt{n}g(X_n) - \sqrt{n}g(\theta) = \sqrt{n}(g(X_n) - g(\theta)) = g'(\theta)\sqrt{n}(X_n - \theta) + o_p(\sqrt{n}|X_n - \theta|).$$

That is, $\sqrt{n}(X_n - \theta) \stackrel{D}{\to} N(0, \sigma^2)$ and $o_p(\sqrt{n}|X_n - \theta|) \stackrel{P}{\to} 0$, so by Theorem 2.5.2 (Slutsky's Theorem),

$$\sqrt{n}g(X_n) - \sqrt{n}g(\theta) = \sqrt{n}(g(X_n) - g(\theta)) \stackrel{D}{\rightarrow} g'(\theta)N(0, \sigma^2) + 0.$$

Now $g'(\theta)N(0,\sigma^2)=N(0,\sigma^2(g'(\theta))^2)$ by Theorem 2.4.2, therefore $\sqrt{n}(g(X_n)-g(\theta))\stackrel{D}{\longrightarrow} N(0,\sigma^2(g'(\theta))^2)$, as claimed.

Mathematical Statistics 1 June 6, 2021