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Theorem 5.2.1

Theorem 5.2.1 (continued 1)

Proof (continued). Since X, L. X then be definition
limp—oo P(|Xn — | >¢)=0, so

Tim Fy < Tim P (IX < x + ) + P(|Xy — X| > €))
:EP(X <x+e) +EP(!X,7 —X| >¢)
=P(X <x+¢e)+0=Fx(x+e). (5.2.5)

Similarly,

P(Xo>x) = P((Xp>x)N({|[Xo— X| <e}U{|X,— X| >¢})

= P((Xa >x)N{|Xy — X| <¢})

+P((Xn > x) N {|Xn — X[ = €})
P((Xn > x) N {|Xn — X]| <e}) + P(|Xn — X| > ¢)
= P(Xp>x)N{—e< X, — X <¢e})

+P((Xn > x)N{|Xn — X| >¢€})...
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Theorem 5.2.1

Theorem 5.2.1

Theorem 5.2.1. If sequence of random variables (X,) converges to X in
probability, then (X,) converges to X in distribution.

Proof. Let x be a point of continuity of the cumulative distribution
function Fx(x) and let € > 0. Then

Fx,(x) P(Xn < x)
= P((Xn < x) 0 ({| X0 — X[ <} U{|Xs — X[ = £})
= PXp <x)N{|Xn—X| <e}+P(Xy, <x)N{|Xy— X| >¢})
< P(Xp < x)0{[Xn = X[ < e} + P(IXy — X| > ¢)
= PXp<x)N{—e< X,—X<e})
+P((Xn < x) N {[Xp — X[ = €})
< P((Xn<x)N{X =X, <e})+ P(|Xn — X| > ¢)
< P(X<x+e¢)+ P(|Xy,— X| > ¢€) since X, < x and
X — X, < ¢ together imply X < X, +e < x+-e.
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Theorem 5.2.1

Theorem 5.2.1 (continued 2)

Proof (continued).
P(Xn>x) < P((Xp>x)N{—e<X,—X<¢})
+P((Xn > x) N {|Xn — X[ > €})

< P((Xh>x)N{—e <X —=Xp})+ P(|Xn — X| > ¢)
< P(X <x—¢)+ P(| Xy, — X]| > ¢) since X, < x and
—e < X — X, together imply X > X, —e > x—e.
Therefore,
lim (1-Fx,(x)) = 1+ lim (=Fx,(x)) =1~ lim Fx,(x)
n—oo n—00 n—oo
= lim (1 = Fx,(x)) = lim P(X, > x)
n—oo n—oo
< Tim (P(X > x— &) + P( Xy — X| > 2))
n—oo
= lim P(X>x—¢)+ I|m P(|X X| >¢)
n—oo
:P(sz—s)+0:1—FX(x—s). (5.2.6)
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Theorem 5.2.1 (continued 3)

Theorem 5.2.1. If sequence of random variables (X,) converges to X in
probability, then (X,) converges to X in distribution.

Proof (continued). Combining (5.2.5) and (5.2.6), we get

Fx(x —¢) < lim Fx,(x) < lim Fx,(x) < Fx(x + ¢).

n—oo n—oo

Since € > 0 is arbitrary and since x is a point of continuity of Fx then we
must have

lim Fx,(x) exists and lim Fx (x) = Fx(x).
n—o0 n—oo

Since x is an arbitrary element of C(Fx), then X, converges in distribution
to X (by definition), as claimed. O
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Theorem 5.2.6

Theorem 5.2.6

Theorem 5.2.6. Let (X,) be a sequence of random variables and let X be
a random variable. If X, — X in distribution, then (X,) is bounded in
probability.

Proof. Consider the cumulative distribution functions Fx, and Fx. Let
€ > 0 be given and choose 1 so that 7 and —n are continuity points of Fx
and P(|X| <mn)>1—¢, as described in equation (5.2.7). Now

lim P(IXs| <m) = lim (Fx,(n) = Fx,(=n) + P(Xs = —n)) by (5.2.7)
> lim Fx,(n) — lim Fx,(-n)+0
n—oo n—oo
= Fx(n) — Fx(—n) since X, b x
> 1—¢by(5.2.7).

So with B. = n there exists N. € N such that for all n > N, we have
P(|Xn] < X:) > 1 —¢ and so (X,) is bounded in probability, as
claimed. ]
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Theorem 5.2.2
Theorem 5.2.2. If sequence of random variables (X,) converges to
constant b in distribution, then (X,) converges to b in probability.

Proof. Let £ > 0. Since X, b by hypothesis then
limy—oo Fx,(x) = Fx(x) = b for all x € C(Fx). So

lim P(|X,—b| <e)= lim P(—e < X, —b<¢)

= lim P(b—c< Xy <b+e)= lim (P(X, < b+e)— P(Xy < b—2))
= lim (P(X, <b+e)—P(Xy <b—e)+P(X,—b—¢))

= lim Fx,(b+¢) = lim_ FXn(b—E)‘i‘n“_(go P(Xp=b—¢)

= 1-0+ nILn;o P(X, = b — ¢) since nILn;O Fx,(x)=b

= 1 since a limit of probabilities must be at most 1.

(Notice that we must have lim,_., P(X = b —¢) = 0). Therefore, by

o P .
definition, X, — b, as claimed. O
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Theorem 5.2.7

Theorem 5.2.7. Let (X,) be a sequence of random variables which is
bounded in probability and let (Y},,) be a sequence of random variables

that converges to 0 in probability. Then X, Y, - 0.

Proof. Since € > 0. Since (X,) is bounded in probability by hypothesis
then there exists B. > 0 and N; € N such that

n > N implies P(|X,| < B:) > 1 —¢.
Then

lim P(|X, Y| =€) = lim P((|XaYn| > €) N (| Xa] < B:) U (| Xn| > B:))

= Tim (P((1Xa Yol = €)1 (1Xa] < B2)) + P((XaYal = €)1 (X, > B.))

n—oo

< T P((XaYal 2 £)0(1X] < B)+ T P((1XaYal = £)1(1%] > B.)

n—oo
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Theorem 5.2.7 (continued)

Proof (continued). ...

< Tim P((1X: Yol 2 )N(1Xal < Bo)) 4+ Tim P((1 X, Yal = £)N(1X0] > B.))

< EP(H/,,\ >¢e/B:) +EP(|XH| > B.) since |X,| > B implies
1/|Xn| < 1/B: so that P(|X,Ys| =€) = P(|Yal > /| Xal)
> P(|Yn| > €/B:) since ¢/B: > ¢/| X,
nli_)rgoP(\Yn\ > ¢/B: since P(|1X,| < B.) >1—¢

implies € > 1 — P(|X,| < B:) = P(|Xs| > B:)

VAN

= 0+¢&=c¢since YN£>O.

So limy—.0o P(|Xn Ya| > €) = 0 and, since P(|X,Y,| > ¢€) > 0, then
lim, . P(|XnYn| >¢€) =0. Hence lim,_.o P(|X,Ys| > €) = 0 so that, by

definition of convergence in probability, XY, LN 0, as claimed. O
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Theorem 5.2.8 (continued)

Theorem 5.2.8. Suppose sequence of random variables (Y,) is bounded
in probability. Suppose X, = 05(Y;,). Then X, £ 0asn— .

Proof (continued). ...

P(1Xnl = €) P(IXal/Yal = €/B=r) + P(|Ya] > Bx)
/24 (1= P(|Yn| <Bo)) < /24 (1—(1-¢/2)

= dpR+R2=¢.

<
<

Since ¢’ > 0 is arbitrary, then lim,_. P(|X,| > ) =0 and so X, 2.0 as
n — oo, as claimed. O
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Theorem 5.2.8

Theorem 5.2.8. Suppose sequence of random variables (Y}) is bounded
in probability. Suppose X, = 0,(Y,). Then X, = 0 as n — oo.
Proof. Let £ > 0 and let &’ > 0. Since (Y,) is bounded in probability by

hypothesis, then (by definition) there events N, € N and B. > 0 such
that if n > N then P(|Y,| < B-) > a—¢'/2. Also, since X, = 0,(Y,) by

hypothesis then (by definition) X,/ Y, £, 0as n— oo; that is,

limp—o0 P(|Sn/Yn| > €) =0. So there is Ny € N such that for all n > N
we have P(|X,/Y,| > ¢/Be) < €'/2. Let N = max{N./, N1 }. Then for

n > N we have

P(IXal Zz ) = P((IXal Z &) V(I Yal < B2) N (| Yal > Bxr))
= P(IXal Z &) N ([ Yal < Br)) + P(([1Xal Z €) N (| Yal > B-r))
< P(|Xal/Yn| > €/B=) + P(|Ya| > B.r) since | X,| > ¢
and |Y,| < B.s implies | X,/ Y,| > ¢/B.
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Theorem 5.2.9

Theorem 5.2.9. Let (X,) be a sequence of random variables which that

Vn(X, —0) 2 N(0,02). Suppose the function g(x) is differentiable at 6
and g’(6) # 0. Then

Vi(g(Xa) — g(6)) 2 N(0,02(g'(6))?).

Proof. By “Theorem 5.2.A. A General Mean Value Theorem” we have

g(Xn) = g(0) + &'(0)(Xn — 0) + 0p(|Xn — 0]),
or

g(Xn) — g(0) = &'(0)(Xn — 0) + 0p(| X — 0])
or

Vng(Xp) — Vng(0) = g'(0)v/n(Xy — 0) + Vnop(| X, — 6]).
Now Y, = 0p(X,) means Y,/X, L oasn— oo (or
limp_oo P(|Yn/Xn| > €) =0), so Y, = 0,(1/nX,) since
lim,—oo P(|Ya/(v/nX5)| =€) =0.
(
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Theorem 5.2.9 (continued)

Proof (continued). Hence

Vng(Xn) — V/ng(0) = g'(0)v/n(Xa — 0) + 0p(v/n| Xy — 0]).
Since /n(X, — 0) 2 N(0, 02), then by Theorem 5.2.6 \/n(X, — 0) is
bounded in probability and hence so is y/n| X, — 6|. By Theorem 5.2.8
(since \/n| X, = 6] is bounded in probability) then o,(y/n|X, — 6]) £ 0as
n — oo which, by Theorem 5.2.1. Therefore,

Vng(Xn)—/ng(0) = v/n(g(Xn)—g(0)) = &'(6)v/n(Xa—0)+0p(/n| Xa—0]).
That is, v/n(X, — 0) 2 N(0,02) and o,(/A|X, — 0]) 2 0, so by Theorem
2.5.2 (Slutsky's Theorem),

Vng(X:) — v/ng(0) = Vn(g(Xa) — g(0)) > g'(O)N(0,0%) +0.
Now g’(8)N(0, ) N(0,52(g’(0))?) by Theorem 2.4.2, therefore

Vvn(g(Xn) —g(0 )) N(0,0%(g'(#))?), as claimed. O
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