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Theorem 5.2.1

Theorem 5.2.1

Theorem 5.2.1. If sequence of random variables (Xn) converges to X in
probability, then (Xn) converges to X in distribution.

Proof. Let x be a point of continuity of the cumulative distribution
function FX (x) and let ε > 0. Then

FXn(x) = P(Xn ≤ x)

= P((Xn ≤ x) ∩ ({|Xn − X | < ε} ∪ {|Xn − X | ≥ ε})
= P(Xn ≤ x) ∩ {|Xn − X | < ε}+ P(Xn ≤ x) ∩ {|Xn − X | ≥ ε})
≤ P(Xn ≤ x) ∩ {|Xn − X | < ε}+ P(|Xn − X | ≥ ε)

= P(Xn ≤ x) ∩ {−ε < Xn − X < ε})
+P((Xn ≤ x) ∩ {|Xn − X | ≥ ε})

≤ P((Xn ≤ x) ∩ {X − Xn < ε}) + P(|Xn − X | ≥ ε)

≤ P(X ≤ x + ε) + P(|Xn − X | ≥ ε) since Xn ≤ x and

X − Xn < ε together imply X ≤ Xn + ε ≤ x + ε.
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Theorem 5.2.1

Theorem 5.2.1 (continued 1)

Proof (continued). Since Xn
P→ X then be definition

limn→∞ P(|Xn − | ≥ ε) = 0, so

lim
n→∞

Fn ≤ lim
n→∞

P (|X ≤ x + ε) + P(|Xn − X | ≥ ε))

= lim
n→∞

P(X ≤ x + ε) + lim
n→∞

P(|Xn − X | ≥ ε)

= P(X ≤ x + ε) + 0 = FX (x + ε). (5.2.5)

Similarly,

P(Xn > x) = P((Xn > x) ∩ ({|Xn − X | < ε} ∪ {|Xn − X | ≥ ε})
= P((Xn > x) ∩ {|Xn − X | < ε})

+P((Xn > x) ∩ {|Xn − X | ≥ ε})
≤ P((Xn > x) ∩ {|Xn − X | < ε}) + P(|Xn − X | ≥ ε)

= P((Xn > x) ∩ {−ε < Xn − X < ε})
+P((Xn > x) ∩ {|Xn − X | ≥ ε}) . . .
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Theorem 5.2.1

Theorem 5.2.1 (continued 2)

Proof (continued). . . .

P(Xn > x) ≤ P((Xn > x) ∩ {−ε < Xn − X < ε})
+P((Xn > x) ∩ {|Xn − X | ≥ ε})

≤ P((Xn > x) ∩ {−ε < X − Xn}) + P(|Xn − X | ≥ ε)

≤ P(X ≤ x − ε) + P(|Xn − X | ≥ ε) since Xn ≤ x and

−ε < X − Xn together imply X > Xn − ε > x − ε.
Therefore,

lim
n→∞

(1− FXn(x)) = 1 + lim
n→∞

(−FXn(x)) = 1− lim
n→∞

FXn(x)

= lim
n→∞

(1− FXn(x)) = lim
n→∞

P(Xn > x)

≤ lim
n→∞

(P(X ≥ x − ε) + P(|Xn − X | ≥ ε))

= lim
n→∞

P(X ≥ x − ε) + lim
n→∞

P(|Xn − X | ≥ ε)

= P(X ≥ x − ε) + 0 = 1− FX (x − ε). (5.2.6)
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Theorem 5.2.1

Theorem 5.2.1 (continued 3)

Theorem 5.2.1. If sequence of random variables (Xn) converges to X in
probability, then (Xn) converges to X in distribution.

Proof (continued). Combining (5.2.5) and (5.2.6), we get

FX (x − ε) ≤ lim
n→∞

FXn(x) ≤ lim
n→∞

FXn(x) ≤ FX (x + ε).

Since ε > 0 is arbitrary and since x is a point of continuity of FX then we
must have

lim
n→∞

FXn(x) exists and lim
n→∞

FXn(x) = FX (x).

Since x is an arbitrary element of C (FX ), then Xn converges in distribution
to X (by definition), as claimed.
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Theorem 5.2.2

Theorem 5.2.2

Theorem 5.2.2. If sequence of random variables (Xn) converges to
constant b in distribution, then (Xn) converges to b in probability.

Proof. Let ε > 0. Since Xn
D→ b by hypothesis then

limn→∞ FXn(x) = FX (x) = b for all x ∈ C (FX ). So

lim
n→∞

P(|Xn − b| ≤ ε) = lim
n→∞

P(−ε ≤ Xn − b ≤ ε)

= lim
n→∞

P(b − ε ≤ Xn ≤ b + ε) = lim
n→∞

(P(Xn ≤ b + ε)− P(Xn < b − ε))

= lim
n→∞

(P(Xn ≤ b + ε)− P(Xn ≤ b − ε) + P(Xn − b − ε))

= lim
n→∞

FXn(b + ε) = lim
n→∞

FXn(b − ε) + lim
n→∞

P(Xn = b − ε)

= 1− 0 + lim
n→∞

P(Xn = b − ε) since lim
n→∞

FXn(x) = b

= 1 since a limit of probabilities must be at most 1.

(Notice that we must have limn→∞ P(X = b − ε) = 0). Therefore, by

definition, Xn
P→ b, as claimed.

() Mathematical Statistics 1 June 6, 2021 7 / 14



Theorem 5.2.2

Theorem 5.2.2

Theorem 5.2.2. If sequence of random variables (Xn) converges to
constant b in distribution, then (Xn) converges to b in probability.

Proof. Let ε > 0. Since Xn
D→ b by hypothesis then

limn→∞ FXn(x) = FX (x) = b for all x ∈ C (FX ). So

lim
n→∞

P(|Xn − b| ≤ ε) = lim
n→∞

P(−ε ≤ Xn − b ≤ ε)

= lim
n→∞

P(b − ε ≤ Xn ≤ b + ε) = lim
n→∞

(P(Xn ≤ b + ε)− P(Xn < b − ε))

= lim
n→∞

(P(Xn ≤ b + ε)− P(Xn ≤ b − ε) + P(Xn − b − ε))

= lim
n→∞

FXn(b + ε) = lim
n→∞

FXn(b − ε) + lim
n→∞

P(Xn = b − ε)

= 1− 0 + lim
n→∞

P(Xn = b − ε) since lim
n→∞

FXn(x) = b

= 1 since a limit of probabilities must be at most 1.

(Notice that we must have limn→∞ P(X = b − ε) = 0). Therefore, by

definition, Xn
P→ b, as claimed.

() Mathematical Statistics 1 June 6, 2021 7 / 14



Theorem 5.2.6

Theorem 5.2.6

Theorem 5.2.6. Let (Xn) be a sequence of random variables and let X be
a random variable. If Xn → X in distribution, then (Xn) is bounded in
probability.

Proof. Consider the cumulative distribution functions FXn and FX . Let
ε > 0 be given and choose η so that η and −η are continuity points of FX

and P(|X | ≤ η) ≥ 1− ε, as described in equation (5.2.7). Now

lim
n→∞

P(|Xn| ≤ η) = lim
n→∞

(FXn(η)− FXn(−η) + P(Xn = −η)) by (5.2.7)

≥ lim
n→∞

FXn(η)− lim
n→∞

FXn(−η) + 0

= FX (η)− FX (−η) since Xn
D→ X

> 1− ε by (5.2.7).

So with Bε = η there exists Nε ∈ N such that for all η ≥ Nε we have
P(|Xn| ≤ Xε) ≥ 1− ε and so (Xn) is bounded in probability, as
claimed.
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Theorem 5.2.7

Theorem 5.2.7

Theorem 5.2.7. Let (Xn) be a sequence of random variables which is
bounded in probability and let (Yn) be a sequence of random variables

that converges to 0 in probability. Then XnYn
P→ 0.

Proof. Since ε > 0. Since (Xn) is bounded in probability by hypothesis
then there exists Bε > 0 and Nε ∈ N such that

n ≥ Nε implies P(|Xn| ≤ Bε) ≥ 1− ε.

Then

lim
n→∞

P(|XnYn| ≥ ε) = lim
n→∞

P ((|XnYN | ≥ ε) ∩ (|Xn| ≤ Bε) ∪ (|Xn| > Bε))

= lim
n→∞

(P((|XnYn| ≥ ε) ∩ (|Xn| ≤ Bε)) + P((|XnYn| ≥ ε) ∩ (|Xn > Bε))

≤ lim
n→∞

P((|XnYn| ≥ ε)∩(|Xn| ≤ Bε))+ lim
n→∞

P((|XnYn| ≥ ε)∩(|Xn| > Bε))
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Theorem 5.2.7

Theorem 5.2.7 (continued)

Proof (continued). . . .

≤ lim
n→∞

P((|XnYn| ≥ ε)∩(|Xn| ≤ Bε))+ lim
n→∞

P((|XnYn| ≥ ε)∩(|Xn| > Bε))

≤ lim
n→∞

P(|Yn| ≥ ε/Bε) + lim
n→∞

P(|Xn| > Bε) since |Xn| > Bε implies

1/|Xn| < 1/Bε so that P(|XnYn| ≥ ε) = P(|Yn| ≥ ε/|Xn|)
≥ P(|Yn| ≥ ε/Bε) since ε/Bε > ε/|Xn|

≤ lim
n→∞

P(|Yn| ≥ ε/Bε since P(|Xn| ≤ Bε) ≥ 1− ε

implies ε ≥ 1− P(|Xn| ≤ Bε) = P(|Xn| > Bε)

= 0 + ε = ε since YN
P→ 0.

So limn→∞P(|XnYn| ≥ ε) = 0 and, since P(|XnYn| ≥ ε) ≥ 0, then
limn→∞ P(|XnYn| ≥ ε) = 0. Hence limn→∞ P(|XnYn| ≥ ε) = 0 so that, by

definition of convergence in probability, XnYn
P→ 0, as claimed.
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Proof (continued). . . .
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Theorem 5.2.8

Theorem 5.2.8

Theorem 5.2.8. Suppose sequence of random variables (Yn) is bounded

in probability. Suppose Xn = op(Yn). Then Xn
P→ 0 as n →∞.

Proof. Let ε > 0 and let ε′ > 0. Since (Yn) is bounded in probability by
hypothesis, then (by definition) there events Nε′ ∈ N and Bε′ > 0 such
that if n ≥ Nε′ then P(|Yn| ≤ Bε′) ≥ a− ε′/2. Also, since Xn = op(Yn) by

hypothesis then (by definition) Xn/Yn
P→ 0 as n →∞; that is,

limn→∞ P(|Sn/Yn| ≥ ε) = 0. So there is N1 ∈ N such that for all n ≥ N1

we have P(|Xn/Yn| ≥ ε/Bε′) < ε′/2.

Let N = max{Nε′ ,N1}. Then for
n ≥ N we have

P(|Xn| ≥ ε) = P((|Xn| ≥ ε) ∩ ((|Yn| ≤ Bε′) ∩ (|Yn| > Bε′))

= P((|Xn| ≥ ε) ∩ (|Yn| ≤ Bε′)) + P((|Xn| ≥ ε) ∩ (|Yn| > Bε′))

≤ P(|Xn|/Yn| ≥ ε/Bε′) + P(|Yn| > Bε′) since |Xn| ≥ ε

and |Yn| ≤ Bε′ implies |Xn/Yn| ≥ ε/Bε′
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Theorem 5.2.8

Theorem 5.2.8 (continued)

Theorem 5.2.8. Suppose sequence of random variables (Yn) is bounded

in probability. Suppose Xn = op(Yn). Then Xn
P→ 0 as n →∞.

Proof (continued). . . .

P(|Xn| ≥ ε) ≤ P(|Xn|/Yn| ≥ ε/Bε′) + P(|Yn| > Bε′)

< ε′/2 + (1− P(|Yn| ≤ Bε′)) < ε′/2 + (1− (1− ε′/2))

= ε′/2 + ε′/2 = ε′.

Since ε′ > 0 is arbitrary, then limn→∞ P(|Xn| ≥ ε) = 0 and so Xn
P→ 0 as

n →∞, as claimed.

() Mathematical Statistics 1 June 6, 2021 12 / 14



Theorem 5.2.9

Theorem 5.2.9

Theorem 5.2.9. Let (Xn) be a sequence of random variables which that
√

n(Xn − θ)
D→ N(0, σ2). Suppose the function g(x) is differentiable at θ

and g ′(θ) 6= 0. Then
√

n(g(Xn)− g(θ))
D→ N(0, σ2(g ′(θ))2).

Proof. By “Theorem 5.2.A. A General Mean Value Theorem” we have

g(Xn) = g(θ) + g ′(θ)(Xn − θ) + op(|Xn − θ|),
or

g(Xn)− g(θ) = g ′(θ)(Xn − θ) + op(|Xn − θ|)
or √

ng(Xn)−
√

ng(θ) = g ′(θ)
√

n(Xn − θ) +
√

nop(|Xn − θ|).

Now Yn = op(Xn) means Yn/Xn
P→ 0 as n →∞ (or

limn→∞ P(|Yn/Xn| ≥ ε) = 0), so Yn = op(
√

nXn) since
limn→∞ P(|Yn/(

√
nXn)| ≥ ε) = 0.
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limn→∞ P(|Yn/Xn| ≥ ε) = 0), so Yn = op(
√

nXn) since
limn→∞ P(|Yn/(

√
nXn)| ≥ ε) = 0.
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Theorem 5.2.9

Theorem 5.2.9. Let (Xn) be a sequence of random variables which that
√

n(Xn − θ)
D→ N(0, σ2). Suppose the function g(x) is differentiable at θ

and g ′(θ) 6= 0. Then
√

n(g(Xn)− g(θ))
D→ N(0, σ2(g ′(θ))2).

Proof. By “Theorem 5.2.A. A General Mean Value Theorem” we have

g(Xn) = g(θ) + g ′(θ)(Xn − θ) + op(|Xn − θ|),
or

g(Xn)− g(θ) = g ′(θ)(Xn − θ) + op(|Xn − θ|)
or √

ng(Xn)−
√

ng(θ) = g ′(θ)
√

n(Xn − θ) +
√

nop(|Xn − θ|).

Now Yn = op(Xn) means Yn/Xn
P→ 0 as n →∞ (or

limn→∞ P(|Yn/Xn| ≥ ε) = 0), so Yn = op(
√

nXn) since
limn→∞ P(|Yn/(

√
nXn)| ≥ ε) = 0.
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Theorem 5.2.9 (continued)

Proof (continued). Hence
√

ng(Xn)−
√

ng(θ) = g ′(θ)
√

n(Xn − θ) + op(
√

n|Xn − θ|).

Since
√

n(Xn − θ)
D→ N(0, σ2), then by Theorem 5.2.6

√
n(Xn − θ) is

bounded in probability and hence so is
√

n|Xn − θ|. By Theorem 5.2.8

(since
√

n|Xn = θ| is bounded in probability) then op(
√

n|Xn − θ|) P→ 0 as
n →∞ which, by Theorem 5.2.1. Therefore,
√

ng(Xn)−
√

ng(θ) =
√

n(g(Xn)−g(θ)) = g ′(θ)
√

n(Xn−θ)+op(
√

n|Xn−θ|).

That is,
√

n(Xn − θ)
D→ N(0, σ2) and op(

√
n|Xn − θ|) P→ 0, so by Theorem

2.5.2 (Slutsky’s Theorem),

√
ng(Xn)−

√
ng(θ) =

√
n(g(Xn)− g(θ))

D→ g ′(θ)N(0, σ2) + 0.

Now g ′(θ)N(0, σ2) = N(0, σ2(g ′(θ))2) by Theorem 2.4.2, therefore
√

n(g(Xn)− g(θ))
D→ N(0, σ2(g ′(θ))2), as claimed.
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Theorem 5.2.9 (continued)

Proof (continued). Hence
√

ng(Xn)−
√

ng(θ) = g ′(θ)
√

n(Xn − θ) + op(
√

n|Xn − θ|).

Since
√

n(Xn − θ)
D→ N(0, σ2), then by Theorem 5.2.6

√
n(Xn − θ) is

bounded in probability and hence so is
√

n|Xn − θ|. By Theorem 5.2.8

(since
√

n|Xn = θ| is bounded in probability) then op(
√

n|Xn − θ|) P→ 0 as
n →∞ which, by Theorem 5.2.1. Therefore,
√

ng(Xn)−
√

ng(θ) =
√

n(g(Xn)−g(θ)) = g ′(θ)
√

n(Xn−θ)+op(
√

n|Xn−θ|).

That is,
√

n(Xn − θ)
D→ N(0, σ2) and op(

√
n|Xn − θ|) P→ 0, so by Theorem

2.5.2 (Slutsky’s Theorem),

√
ng(Xn)−

√
ng(θ) =

√
n(g(Xn)− g(θ))

D→ g ′(θ)N(0, σ2) + 0.

Now g ′(θ)N(0, σ2) = N(0, σ2(g ′(θ))2) by Theorem 2.4.2, therefore
√

n(g(Xn)− g(θ))
D→ N(0, σ2(g ′(θ))2), as claimed.
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