Mathematical Statistics 1

Chapter 5. Consistency and Limiting Distributions 5.2. Convergence in Distribution-Proofs of Theorems

Table of contents

(1) Theorem 5.2.1
(2) Theorem 5.2.2
(3) Theorem 5.2.6
(4) Theorem 5.2.7
(5) Theorem 5.2.8
(6) Theorem 5.2.9

Theorem 5.2.1

Theorem 5.2.1. If sequence of random variables $\left(X_{n}\right)$ converges to X in probability, then $\left(X_{n}\right)$ converges to X in distribution.

Proof. Let x be a point of continuity of the cumulative distribution function $F_{X}(x)$ and let $\varepsilon>0$. Then

$$
\begin{aligned}
F_{X_{n}}(x)= & P\left(X_{n} \leq x\right) \\
= & P\left(\left(X_{n} \leq x\right) \cap\left(\left\{\left|X_{n}-X\right|<\varepsilon\right\} \cup\left\{\left|X_{n}-X\right| \geq \varepsilon\right\}\right)\right. \\
= & \left.P\left(X_{n} \leq x\right) \cap\left\{\left|X_{n}-X\right|<\varepsilon\right\}+P\left(X_{n} \leq x\right) \cap\left\{\left|X_{n}-X\right| \geq \varepsilon\right\}\right) \\
\leq & P\left(X_{n} \leq x\right) \cap\left\{\left|X_{n}-X\right|<\varepsilon\right\}+P\left(\left|X_{n}-X\right| \geq \varepsilon\right) \\
= & \left.P\left(X_{n} \leq x\right) \cap\left\{-\varepsilon<X_{n}-X<\varepsilon\right\}\right) \\
& +P\left(\left(X_{n} \leq x\right) \cap\left\{\left|X_{n}-X\right| \geq \varepsilon\right\}\right) \\
\leq & P\left(\left(X_{n} \leq x\right) \cap\left\{X-X_{n}<\varepsilon\right\}\right)+P\left(\left|X_{n}-X\right| \geq \varepsilon\right) \\
\leq & P(X \leq x+\varepsilon)+P\left(\left|X_{n}-X\right| \geq \varepsilon\right) \text { since } X_{n} \leq x \text { and } \\
& X-X_{n}<\varepsilon \text { together imply } X \leq X_{n}+\varepsilon \leq x+\varepsilon .
\end{aligned}
$$

Theorem 5.2.1

Theorem 5.2.1. If sequence of random variables $\left(X_{n}\right)$ converges to X in probability, then $\left(X_{n}\right)$ converges to X in distribution.

Proof. Let x be a point of continuity of the cumulative distribution function $F_{X}(x)$ and let $\varepsilon>0$. Then

$$
\begin{aligned}
F_{X_{n}}(x)= & P\left(X_{n} \leq x\right) \\
= & P\left(\left(X_{n} \leq x\right) \cap\left(\left\{\left|X_{n}-X\right|<\varepsilon\right\} \cup\left\{\left|X_{n}-X\right| \geq \varepsilon\right\}\right)\right. \\
= & \left.P\left(X_{n} \leq x\right) \cap\left\{\left|X_{n}-X\right|<\varepsilon\right\}+P\left(X_{n} \leq x\right) \cap\left\{\left|X_{n}-X\right| \geq \varepsilon\right\}\right) \\
\leq & P\left(X_{n} \leq x\right) \cap\left\{\left|X_{n}-X\right|<\varepsilon\right\}+P\left(\left|X_{n}-X\right| \geq \varepsilon\right) \\
= & \left.P\left(X_{n} \leq x\right) \cap\left\{-\varepsilon<X_{n}-X<\varepsilon\right\}\right) \\
& +P\left(\left(X_{n} \leq x\right) \cap\left\{\left|X_{n}-X\right| \geq \varepsilon\right\}\right) \\
\leq & P\left(\left(X_{n} \leq x\right) \cap\left\{X-X_{n}<\varepsilon\right\}\right)+P\left(\left|X_{n}-X\right| \geq \varepsilon\right) \\
\leq & P(X \leq x+\varepsilon)+P\left(\left|X_{n}-X\right| \geq \varepsilon\right) \text { since } X_{n} \leq x \text { and } \\
& X-X_{n}<\varepsilon \text { together imply } X \leq X_{n}+\varepsilon \leq x+\varepsilon .
\end{aligned}
$$

Theorem 5.2.1 (continued 1)

Proof (continued). Since $X_{n} \xrightarrow{P} X$ then be definition $\lim _{n \rightarrow \infty} P\left(\left|X_{n}-\right| \geq \varepsilon\right)=0$, so

$$
\begin{gather*}
\left.\overline{\lim }_{n \rightarrow \infty} F_{n} \leq \varlimsup_{n \rightarrow \infty} P(\mid X \leq x+\varepsilon)+P\left(\left|X_{n}-X\right| \geq \varepsilon\right)\right) \\
=\overline{\lim }_{n \rightarrow \infty} P(X \leq x+\varepsilon)+\overline{\lim }_{n \rightarrow \infty} P\left(\left|X_{n}-X\right| \geq \varepsilon\right) \\
=P(X \leq x+\varepsilon)+0=F_{X}(x+\varepsilon) \tag{5.2.5}
\end{gather*}
$$

Similarly,

$$
\begin{aligned}
P\left(X_{n}>x\right)= & P\left(\left(X_{n}>x\right) \cap\left(\left\{\left|X_{n}-X\right|<\varepsilon\right\} \cup\left\{\left|X_{n}-X\right| \geq \varepsilon\right\}\right)\right. \\
= & P\left(\left(X_{n}>x\right) \cap\left\{\left|X_{n}-X\right|<\varepsilon\right\}\right) \\
& +P\left(\left(X_{n}>x\right) \cap\left\{\left|X_{n}-X\right| \geq \varepsilon\right\}\right) \\
\leq & P\left(\left(X_{n}>x\right) \cap\left\{\left|X_{n}-X\right|<\varepsilon\right\}\right)+P\left(\left|X_{n}-X\right| \geq \varepsilon\right) \\
= & P\left(\left(X_{n}>x\right) \cap\left\{-\varepsilon<X_{n}-X<\varepsilon\right\}\right) \\
& +P\left(\left(X_{n}>x\right) \cap\left\{\left|X_{n}-X\right| \geq \varepsilon\right\}\right) \ldots
\end{aligned}
$$

Theorem 5.2.1 (continued 1)

Proof (continued). Since $X_{n} \xrightarrow{P} X$ then be definition $\lim _{n \rightarrow \infty} P\left(\left|X_{n}-\right| \geq \varepsilon\right)=0$, so

$$
\begin{gather*}
\left.\varlimsup_{n \rightarrow \infty} F_{n} \leq \varlimsup_{n \rightarrow \infty} P(\mid X \leq x+\varepsilon)+P\left(\left|X_{n}-X\right| \geq \varepsilon\right)\right) \\
=\varlimsup_{n \rightarrow \infty} P(X \leq x+\varepsilon)+\overline{\lim }_{n \rightarrow \infty} P\left(\left|X_{n}-X\right| \geq \varepsilon\right) \\
=P(X \leq x+\varepsilon)+0=F_{X}(x+\varepsilon) \tag{5.2.5}
\end{gather*}
$$

Similarly,

$$
\begin{aligned}
P\left(X_{n}>x\right)= & P\left(\left(X_{n}>x\right) \cap\left(\left\{\left|X_{n}-X\right|<\varepsilon\right\} \cup\left\{\left|X_{n}-X\right| \geq \varepsilon\right\}\right)\right. \\
= & P\left(\left(X_{n}>x\right) \cap\left\{\left|X_{n}-X\right|<\varepsilon\right\}\right) \\
& +P\left(\left(X_{n}>x\right) \cap\left\{\left|X_{n}-X\right| \geq \varepsilon\right\}\right) \\
\leq & P\left(\left(X_{n}>x\right) \cap\left\{\left|X_{n}-X\right|<\varepsilon\right\}\right)+P\left(\left|X_{n}-X\right| \geq \varepsilon\right) \\
= & P\left(\left(X_{n}>x\right) \cap\left\{-\varepsilon<X_{n}-X<\varepsilon\right\}\right) \\
& +P\left(\left(X_{n}>x\right) \cap\left\{\left|X_{n}-X\right| \geq \varepsilon\right\}\right) \ldots
\end{aligned}
$$

Theorem 5.2.1 (continued 2)

Proof (continued).

$$
\begin{aligned}
P\left(X_{n}>x\right) \leq & P\left(\left(X_{n}>x\right) \cap\left\{-\varepsilon<X_{n}-X<\varepsilon\right\}\right) \\
& +P\left(\left(X_{n}>x\right) \cap\left\{\left|X_{n}-X\right| \geq \varepsilon\right\}\right) \\
\leq & P\left(\left(X_{n}>x\right) \cap\left\{-\varepsilon<X-X_{n}\right\}\right)+P\left(\left|X_{n}-X\right| \geq \varepsilon\right) \\
\leq & P(X \leq x-\varepsilon)+P\left(\left|X_{n}-X\right| \geq \varepsilon\right) \text { since } X_{n} \leq x \text { and } \\
& -\varepsilon<X-X_{n} \text { together imply } X>X_{n}-\varepsilon>x-\varepsilon .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left(1-F_{X_{n}}(x)\right) & =1+\lim _{n \rightarrow \infty}\left(-F_{X_{n}}(x)\right)=1-\lim _{n \rightarrow \infty} F_{X_{n}}(x) \\
& =\overline{\lim }_{n \rightarrow \infty}\left(1-F_{X_{n}}(x)\right)=\lim _{n \rightarrow \infty} P\left(X_{n}>x\right) \\
& \leq \lim _{n \rightarrow \infty}\left(P(X \geq x-\varepsilon)+P\left(\left|X_{n}-X\right| \geq \varepsilon\right)\right) \\
& =\lim _{n \rightarrow \infty} P(X \geq x-\varepsilon)+\lim _{n \rightarrow \infty} P\left(\left|X_{n}-X\right| \geq \varepsilon\right) \\
& =P(X \geq x-\varepsilon)+0=1-F_{X}(x-\varepsilon) . \tag{5.2.6}
\end{align*}
$$

Theorem 5.2.1 (continued 2)

Proof (continued).

$$
\begin{aligned}
P\left(X_{n}>x\right) \leq & P\left(\left(X_{n}>x\right) \cap\left\{-\varepsilon<X_{n}-X<\varepsilon\right\}\right) \\
& +P\left(\left(X_{n}>x\right) \cap\left\{\left|X_{n}-X\right| \geq \varepsilon\right\}\right) \\
\leq & P\left(\left(X_{n}>x\right) \cap\left\{-\varepsilon<X-X_{n}\right\}\right)+P\left(\left|X_{n}-X\right| \geq \varepsilon\right) \\
\leq & P(X \leq x-\varepsilon)+P\left(\left|X_{n}-X\right| \geq \varepsilon\right) \text { since } X_{n} \leq x \text { and } \\
& -\varepsilon<X-X_{n} \text { together imply } X>X_{n}-\varepsilon>x-\varepsilon .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left(1-F_{X_{n}}(x)\right) & =1+\lim _{n \rightarrow \infty}\left(-F_{X_{n}}(x)\right)=1-\varlimsup_{n \rightarrow \infty} F_{X_{n}}(x) \\
& =\varlimsup_{n \rightarrow \infty}\left(1-F_{X_{n}}(x)\right)=\varlimsup_{n \rightarrow \infty} P\left(X_{n}>x\right) \\
& \leq \varlimsup_{n \rightarrow \infty}\left(P(X \geq x-\varepsilon)+P\left(\left|X_{n}-X\right| \geq \varepsilon\right)\right) \\
& =\varlimsup_{n \rightarrow \infty} P(X \geq x-\varepsilon)+\varlimsup_{n \rightarrow \infty} P\left(\left|X_{n}-X\right| \geq \varepsilon\right) \\
& =P(X \geq x-\varepsilon)+0=1-F_{X}(x-\varepsilon) . \tag{5.2.6}
\end{align*}
$$

Theorem 5.2.1 (continued 3)

Theorem 5.2.1. If sequence of random variables $\left(X_{n}\right)$ converges to X in probability, then $\left(X_{n}\right)$ converges to X in distribution.

Proof (continued). Combining (5.2.5) and (5.2.6), we get

$$
F_{X}(x-\varepsilon) \leq \lim _{n \rightarrow \infty} F_{X_{n}}(x) \leq \varlimsup_{n \rightarrow \infty} F_{X_{n}}(x) \leq F_{X}(x+\varepsilon) .
$$

Since $\varepsilon>0$ is arbitrary and since x is a point of continuity of F_{X} then we must have

$$
\lim _{n \rightarrow \infty} F_{X_{n}}(x) \text { exists and } \lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)
$$

Since x is an arbitrary element of $C\left(F_{X}\right)$, then X_{n} converges in distribution to X (by definition), as claimed.

Theorem 5.2.2

Theorem 5.2.2. If sequence of random variables $\left(X_{n}\right)$ converges to constant b in distribution, then $\left(X_{n}\right)$ converges to b in probability.

Proof. Let $\varepsilon>0$. Since $X_{n} \xrightarrow{D} b$ by hypothesis then
$\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)=b$ for all $x \in C\left(F_{X}\right)$. So

$$
\lim _{n \rightarrow \infty} P\left(\left|X_{n}-b\right| \leq \varepsilon\right)=\lim _{n \rightarrow \infty} P\left(-\varepsilon \leq X_{n}-b \leq \varepsilon\right)
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} P\left(b-\varepsilon \leq X_{n} \leq b+\varepsilon\right)=\lim _{n \rightarrow \infty}\left(P\left(X_{n} \leq b+\varepsilon\right)-P\left(X_{n}<b-\varepsilon\right)\right) \\
& =\lim _{n \rightarrow \infty}\left(P\left(X_{n} \leq b+\varepsilon\right)-P\left(X_{n} \leq b-\varepsilon\right)+P\left(X_{n}-b-\varepsilon\right)\right) \\
& =\lim _{n \rightarrow \infty} F_{X_{n}}(b+\varepsilon)=\lim _{n \rightarrow \infty} F_{X_{n}}(b-\varepsilon)+\lim _{n \rightarrow \infty} P\left(X_{n}=b-\varepsilon\right) \\
& =1-0+\lim _{n \rightarrow \infty} P\left(X_{n}=b-\varepsilon\right) \text { since } \lim _{n \rightarrow \infty} F_{X_{n}}(x)=b \\
& =1 \text { since a limit of probabilities must be at most } 1 .
\end{aligned}
$$

(Notice that we must have $\left.\lim _{n \rightarrow \infty} P(X=b-\varepsilon)=0\right)$. Therefore, by definition, $X_{n} \xrightarrow{P} b$, as claimed.

Theorem 5.2.2

Theorem 5.2.2. If sequence of random variables $\left(X_{n}\right)$ converges to constant b in distribution, then $\left(X_{n}\right)$ converges to b in probability.
Proof. Let $\varepsilon>0$. Since $X_{n} \xrightarrow{D} b$ by hypothesis then $\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)=b$ for all $x \in C\left(F_{X}\right)$. So

$$
\lim _{n \rightarrow \infty} P\left(\left|X_{n}-b\right| \leq \varepsilon\right)=\lim _{n \rightarrow \infty} P\left(-\varepsilon \leq X_{n}-b \leq \varepsilon\right)
$$

$=\lim _{n \rightarrow \infty} P\left(b-\varepsilon \leq X_{n} \leq b+\varepsilon\right)=\lim _{n \rightarrow \infty}\left(P\left(X_{n} \leq b+\varepsilon\right)-P\left(X_{n}<b-\varepsilon\right)\right)$
$=\lim _{n \rightarrow \infty}\left(P\left(X_{n} \leq b+\varepsilon\right)-P\left(X_{n} \leq b-\varepsilon\right)+P\left(X_{n}-b-\varepsilon\right)\right)$
$=\lim _{n \rightarrow \infty} F_{X_{n}}(b+\varepsilon)=\lim _{n \rightarrow \infty} F_{X_{n}}(b-\varepsilon)+\lim _{n \rightarrow \infty} P\left(X_{n}=b-\varepsilon\right)$
$=1-0+\lim _{n \rightarrow \infty} P\left(X_{n}=b-\varepsilon\right)$ since $\lim _{n \rightarrow \infty} F_{X_{n}}(x)=b$
$=1$ since a limit of probabilities must be at most 1 .
(Notice that we must have $\left.\lim _{n \rightarrow \infty} P(X=b-\varepsilon)=0\right)$. Therefore, by definition, $X_{n} \xrightarrow{P} b$, as claimed.

Theorem 5.2.6

Theorem 5.2.6. Let $\left(X_{n}\right)$ be a sequence of random variables and let X be a random variable. If $X_{n} \rightarrow X$ in distribution, then $\left(X_{n}\right)$ is bounded in probability.

Proof. Consider the cumulative distribution functions $F_{X_{n}}$ and F_{X}. Let $\varepsilon>0$ be given and choose η so that η and $-\eta$ are continuity points of F_{X} and $P(|X| \leq \eta) \geq 1-\varepsilon$, as described in equation (5.2.7). Now

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P\left(\left|X_{n}\right| \leq \eta\right) & =\lim _{n \rightarrow \infty}\left(F_{X_{n}}(\eta)-F_{X_{n}}(-\eta)+P\left(X_{n}=-\eta\right)\right) \text { by (5.2.7) } \\
& \geq \lim _{n \rightarrow \infty} F_{X_{n}}(\eta)-\lim _{n \rightarrow \infty} F_{X_{n}}(-\eta)+0 \\
& =F_{X}(\eta)-F_{X}(-\eta) \text { since } X_{n} \xrightarrow{D} X \\
& >1-\varepsilon \text { by }(5.2 .7) .
\end{aligned}
$$

Theorem 5.2.6

Theorem 5.2.6. Let $\left(X_{n}\right)$ be a sequence of random variables and let X be a random variable. If $X_{n} \rightarrow X$ in distribution, then $\left(X_{n}\right)$ is bounded in probability.

Proof. Consider the cumulative distribution functions $F_{X_{n}}$ and F_{X}. Let $\varepsilon>0$ be given and choose η so that η and $-\eta$ are continuity points of F_{X} and $P(|X| \leq \eta) \geq 1-\varepsilon$, as described in equation (5.2.7). Now

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P\left(\left|X_{n}\right| \leq \eta\right) & =\lim _{n \rightarrow \infty}\left(F_{X_{n}}(\eta)-F_{X_{n}}(-\eta)+P\left(X_{n}=-\eta\right)\right) \text { by (5.2.7) } \\
& \geq \lim _{n \rightarrow \infty} F_{X_{n}}(\eta)-\lim _{n \rightarrow \infty} F_{X_{n}}(-\eta)+0 \\
& =F_{X}(\eta)-F_{X}(-\eta) \text { since } X_{n} \xrightarrow{D} X \\
& >1-\varepsilon \text { by }(5.2 .7) .
\end{aligned}
$$

So with $B_{\varepsilon}=\eta$ there exists $N_{\varepsilon} \in \mathbb{N}$ such that for all $\eta \geq N_{\varepsilon}$ we have $P\left(\left|X_{n}\right| \leq X_{\varepsilon}\right) \geq 1-\varepsilon$ and so $\left(X_{n}\right)$ is bounded in probability, as

Theorem 5.2.6

Theorem 5.2.6. Let $\left(X_{n}\right)$ be a sequence of random variables and let X be a random variable. If $X_{n} \rightarrow X$ in distribution, then $\left(X_{n}\right)$ is bounded in probability.
Proof. Consider the cumulative distribution functions $F_{X_{n}}$ and F_{X}. Let $\varepsilon>0$ be given and choose η so that η and $-\eta$ are continuity points of F_{X} and $P(|X| \leq \eta) \geq 1-\varepsilon$, as described in equation (5.2.7). Now

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P\left(\left|X_{n}\right| \leq \eta\right) & =\lim _{n \rightarrow \infty}\left(F_{X_{n}}(\eta)-F_{X_{n}}(-\eta)+P\left(X_{n}=-\eta\right)\right) \text { by }(5.2 .7) \\
& \geq \lim _{n \rightarrow \infty} F_{X_{n}}(\eta)-\lim _{n \rightarrow \infty} F_{X_{n}}(-\eta)+0 \\
& =F_{X}(\eta)-F_{X}(-\eta) \text { since } X_{n} \xrightarrow{D} X \\
& >1-\varepsilon \text { by }(5.2 .7)
\end{aligned}
$$

So with $B_{\varepsilon}=\eta$ there exists $N_{\varepsilon} \in \mathbb{N}$ such that for all $\eta \geq N_{\varepsilon}$ we have $P\left(\left|X_{n}\right| \leq X_{\varepsilon}\right) \geq 1-\varepsilon$ and so $\left(X_{n}\right)$ is bounded in probability, as claimed.

Theorem 5.2.7

Theorem 5.2.7. Let $\left(X_{n}\right)$ be a sequence of random variables which is bounded in probability and let $\left(Y_{n}\right)$ be a sequence of random variables that converges to 0 in probability. Then $X_{n} Y_{n} \xrightarrow{P} 0$.

Proof. Since $\varepsilon>0$. Since $\left(X_{n}\right)$ is bounded in probability by hypothesis then there exists $B_{\varepsilon}>0$ and $N_{\varepsilon} \in \mathbb{N}$ such that
$n \geq N_{\varepsilon}$ implies $P\left(\left|X_{n}\right| \leq B_{\varepsilon}\right) \geq 1-\varepsilon$.

Theorem 5.2.7

Theorem 5.2.7. Let $\left(X_{n}\right)$ be a sequence of random variables which is bounded in probability and let $\left(Y_{n}\right)$ be a sequence of random variables that converges to 0 in probability. Then $X_{n} Y_{n} \xrightarrow{P} 0$.

Proof. Since $\varepsilon>0$. Since $\left(X_{n}\right)$ is bounded in probability by hypothesis then there exists $B_{\varepsilon}>0$ and $N_{\varepsilon} \in \mathbb{N}$ such that

$$
n \geq N_{\varepsilon} \text { implies } P\left(\left|X_{n}\right| \leq B_{\varepsilon}\right) \geq 1-\varepsilon .
$$

Then

$\varlimsup_{n \rightarrow \infty} P\left(\left|X_{n} Y_{n}\right| \geq \varepsilon\right)=\lim _{n \rightarrow \infty} P\left(\left(\left|X_{n} Y_{N}\right| \geq \varepsilon\right) \cap\left(\left|X_{n}\right| \leq B_{\varepsilon}\right) \cup\left(\left|X_{n}\right|>B_{\varepsilon}\right)\right)$
$=\overline{\lim }_{n \rightarrow \infty}\left(P\left(\left(\left|X_{n} Y_{n}\right| \geq \varepsilon\right) \cap\left(\left|X_{n}\right| \leq B_{\varepsilon}\right)\right)+P\left(\left(\left|X_{n} Y_{n}\right| \geq \varepsilon\right) \cap\left(\mid X_{n}>B_{\varepsilon}\right)\right)\right.$
$\leq \overline{\lim }_{n \rightarrow \infty} P\left(\left(\left|X_{n} Y_{n}\right| \geq \varepsilon\right) \cap\left(\left|X_{n}\right| \leq B_{\varepsilon}\right)\right)+\overline{\lim _{n \rightarrow \infty}} P\left(\left(\left|X_{n} Y_{n}\right| \geq \varepsilon\right) \cap\left(\left|X_{n}\right|>B_{\varepsilon}\right)\right)$

Theorem 5.2.7

Theorem 5.2.7. Let $\left(X_{n}\right)$ be a sequence of random variables which is bounded in probability and let $\left(Y_{n}\right)$ be a sequence of random variables that converges to 0 in probability. Then $X_{n} Y_{n} \xrightarrow{P} 0$.

Proof. Since $\varepsilon>0$. Since $\left(X_{n}\right)$ is bounded in probability by hypothesis then there exists $B_{\varepsilon}>0$ and $N_{\varepsilon} \in \mathbb{N}$ such that

$$
n \geq N_{\varepsilon} \text { implies } P\left(\left|X_{n}\right| \leq B_{\varepsilon}\right) \geq 1-\varepsilon .
$$

Then

$$
\begin{aligned}
& \overline{\lim }_{n \rightarrow \infty} P\left(\left|X_{n} Y_{n}\right| \geq \varepsilon\right)=\overline{\lim }_{n \rightarrow \infty} P\left(\left(\left|X_{n} Y_{N}\right| \geq \varepsilon\right) \cap\left(\left|X_{n}\right| \leq B_{\varepsilon}\right) \cup\left(\left|X_{n}\right|>B_{\varepsilon}\right)\right) \\
& =\overline{\lim }_{n \rightarrow \infty}\left(P\left(\left(\left|X_{n} Y_{n}\right| \geq \varepsilon\right) \cap\left(\left|X_{n}\right| \leq B_{\varepsilon}\right)\right)+P\left(\left(\left|X_{n} Y_{n}\right| \geq \varepsilon\right) \cap\left(\mid X_{n}>B_{\varepsilon}\right)\right)\right. \\
& \leq \overline{\lim }_{n \rightarrow \infty} P\left(\left(\left|X_{n} Y_{n}\right| \geq \varepsilon\right) \cap\left(\left|X_{n}\right| \leq B_{\varepsilon}\right)\right)+\overline{\lim }_{n \rightarrow \infty} P\left(\left(\left|X_{n} Y_{n}\right| \geq \varepsilon\right) \cap\left(\left|X_{n}\right|>B_{\varepsilon}\right)\right)
\end{aligned}
$$

Theorem 5.2.7 (continued)

Proof (continued). ...

$\leq \varlimsup_{n \rightarrow \infty} P\left(\left(\left|X_{n} Y_{n}\right| \geq \varepsilon\right) \cap\left(\left|X_{n}\right| \leq B_{\varepsilon}\right)\right)+\varlimsup_{n \rightarrow \infty} P\left(\left(\left|X_{n} Y_{n}\right| \geq \varepsilon\right) \cap\left(\left|X_{n}\right|>B_{\varepsilon}\right)\right)$
$\leq \varlimsup_{n \rightarrow \infty} P\left(\left|Y_{n}\right| \geq \varepsilon / B_{\varepsilon}\right)+\varlimsup_{n \rightarrow \infty} P\left(\left|X_{n}\right|>B_{\varepsilon}\right)$ since $\left|X_{n}\right|>B_{\varepsilon}$ implies $1 /\left|X_{n}\right|<1 / B_{\varepsilon}$ so that $P\left(\left|X_{n} Y_{n}\right| \geq \varepsilon\right)=P\left(\left|Y_{n}\right| \geq \varepsilon /\left|X_{n}\right|\right)$
$\geq P\left(\left|Y_{n}\right| \geq \varepsilon / B_{\varepsilon}\right)$ since $\varepsilon / B_{\varepsilon}>\varepsilon /\left|X_{n}\right|$
$\leq \varlimsup_{n \rightarrow \infty} P\left(\left|Y_{n}\right| \geq \varepsilon / B_{\varepsilon}\right.$ since $P\left(\left|X_{n}\right| \leq B_{\varepsilon}\right) \geq 1-\varepsilon$ implies $\varepsilon \geq 1-P\left(\left|X_{n}\right| \leq B_{\varepsilon}\right)=P\left(\left|X_{n}\right|>B_{\varepsilon}\right)$
$=0+\varepsilon=\varepsilon$ since $Y_{N} \xrightarrow{P} 0$.
So $\overline{\lim }_{n \rightarrow \infty} P\left(\left|X_{n} Y_{n}\right| \geq \varepsilon\right)=0$ and, since $P\left(\left|X_{n} Y_{n}\right| \geq \varepsilon\right) \geq 0$, then $\underline{\lim }_{n \rightarrow \infty} P\left(\left|X_{n} Y_{n}\right| \geq \varepsilon\right)=0$. Hence $\lim _{n \rightarrow \infty} P\left(\left|X_{n} Y_{n}\right| \geq \varepsilon\right)=0$ so that, by definition of convergence in probability, $X_{n} Y_{n} \xrightarrow{P} 0$, as claimed.

Theorem 5.2.7 (continued)

Proof (continued). ...

$\leq \varlimsup_{n \rightarrow \infty} P\left(\left(\left|X_{n} Y_{n}\right| \geq \varepsilon\right) \cap\left(\left|X_{n}\right| \leq B_{\varepsilon}\right)\right)+\varlimsup_{n \rightarrow \infty} P\left(\left(\left|X_{n} Y_{n}\right| \geq \varepsilon\right) \cap\left(\left|X_{n}\right|>B_{\varepsilon}\right)\right)$
$\leq \lim _{n \rightarrow \infty} P\left(\left|Y_{n}\right| \geq \varepsilon / B_{\varepsilon}\right)+\varlimsup_{n \rightarrow \infty} P\left(\left|X_{n}\right|>B_{\varepsilon}\right)$ since $\left|X_{n}\right|>B_{\varepsilon}$ implies $1 /\left|X_{n}\right|<1 / B_{\varepsilon}$ so that $P\left(\left|X_{n} Y_{n}\right| \geq \varepsilon\right)=P\left(\left|Y_{n}\right| \geq \varepsilon /\left|X_{n}\right|\right)$ $\geq P\left(\left|Y_{n}\right| \geq \varepsilon / B_{\varepsilon}\right)$ since $\varepsilon / B_{\varepsilon}>\varepsilon /\left|X_{n}\right|$
$\leq \varlimsup_{n \rightarrow \infty} P\left(\left|Y_{n}\right| \geq \varepsilon / B_{\varepsilon}\right.$ since $P\left(\left|X_{n}\right| \leq B_{\varepsilon}\right) \geq 1-\varepsilon$ implies $\varepsilon \geq 1-P\left(\left|X_{n}\right| \leq B_{\varepsilon}\right)=P\left(\left|X_{n}\right|>B_{\varepsilon}\right)$
$=0+\varepsilon=\varepsilon$ since $Y_{N} \xrightarrow{P} 0$.
So $\varlimsup_{n \rightarrow \infty} P\left(\left|X_{n} Y_{n}\right| \geq \varepsilon\right)=0$ and, since $P\left(\left|X_{n} Y_{n}\right| \geq \varepsilon\right) \geq 0$, then $\underline{\lim }_{n \rightarrow \infty} P\left(\left|X_{n} Y_{n}\right| \geq \varepsilon\right)=0$. Hence $\lim _{n \rightarrow \infty} P\left(\left|X_{n} Y_{n}\right| \geq \varepsilon\right)=0$ so that, by definition of convergence in probability, $X_{n} Y_{n} \xrightarrow{P} 0$, as claimed.

Theorem 5.2.8

Theorem 5.2.8. Suppose sequence of random variables $\left(Y_{n}\right)$ is bounded in probability. Suppose $X_{n}=o_{p}\left(Y_{n}\right)$. Then $X_{n} \xrightarrow{P} 0$ as $n \rightarrow \infty$.

Proof. Let $\varepsilon>0$ and let $\varepsilon^{\prime}>0$. Since $\left(Y_{n}\right)$ is bounded in probability by hypothesis, then (by definition) there events $N_{\varepsilon^{\prime}} \in \mathbb{N}$ and $B_{\varepsilon^{\prime}}>0$ such that if $n \geq N_{\varepsilon^{\prime}}$ then $P\left(\left|Y_{n}\right| \leq B_{\varepsilon^{\prime}}\right) \geq a-\varepsilon^{\prime} / 2$. Also, since $X_{n}=o_{p}\left(Y_{n}\right)$ by hypothesis then (by definition) $X_{n} / Y_{n} \xrightarrow{P} 0$ as $n \rightarrow \infty$; that is, $\lim _{n \rightarrow \infty} P\left(\left|S_{n} / Y_{n}\right| \geq \varepsilon\right)=0$. So there is $N_{1} \in \mathbb{N}$ such that for all $n \geq N_{1}$ we have $P\left(\left|X_{n} / Y_{n}\right| \geq \varepsilon / B_{\varepsilon^{\prime}}\right)<\varepsilon^{\prime} / 2$.

Theorem 5.2.8

Theorem 5.2.8. Suppose sequence of random variables $\left(Y_{n}\right)$ is bounded in probability. Suppose $X_{n}=o_{p}\left(Y_{n}\right)$. Then $X_{n} \xrightarrow{P} 0$ as $n \rightarrow \infty$.

Proof. Let $\varepsilon>0$ and let $\varepsilon^{\prime}>0$. Since $\left(Y_{n}\right)$ is bounded in probability by hypothesis, then (by definition) there events $N_{\varepsilon^{\prime}} \in \mathbb{N}$ and $B_{\varepsilon^{\prime}}>0$ such that if $n \geq N_{\varepsilon^{\prime}}$ then $P\left(\left|Y_{n}\right| \leq B_{\varepsilon^{\prime}}\right) \geq a-\varepsilon^{\prime} / 2$. Also, since $X_{n}=o_{p}\left(Y_{n}\right)$ by hypothesis then (by definition) $X_{n} / Y_{n} \xrightarrow{P} 0$ as $n \rightarrow \infty$; that is, $\lim _{n \rightarrow \infty} P\left(\left|S_{n} / Y_{n}\right| \geq \varepsilon\right)=0$. So there is $N_{1} \in \mathbb{N}$ such that for all $n \geq N_{1}$ we have $P\left(\left|X_{n} / Y_{n}\right| \geq \varepsilon / B_{\varepsilon^{\prime}}\right)<\varepsilon^{\prime} / 2$. Let $N=\max \left\{N_{\varepsilon^{\prime}}, N_{1}\right\}$. Then for $n \geq N$ we have
$P\left(\left|X_{n}\right| \geq \varepsilon\right)=P\left(\left(\left|X_{n}\right| \geq \varepsilon\right) \cap\left(\left(\left|Y_{n}\right| \leq B_{\varepsilon^{\prime}}\right) \cap\left(\left|Y_{n}\right|>B_{\varepsilon^{\prime}}\right)\right)\right.$
$=P\left(\left(\left|X_{n}\right| \geq \varepsilon\right) \cap\left(\left|Y_{n}\right| \leq B_{\varepsilon^{\prime}}\right)\right)+P\left(\left(\left|X_{n}\right| \geq \varepsilon\right) \cap\left(\left|Y_{n}\right|>B_{\varepsilon^{\prime}}\right)\right)$
$\leq P\left(\left|X_{n}\right| / Y_{n} \mid \geq \varepsilon / B_{\varepsilon^{\prime}}\right)+P\left(\left|Y_{n}\right|>B_{\varepsilon^{\prime}}\right)$ since $\left|X_{n}\right| \geq \varepsilon$ and $\left|Y_{n}\right| \leq B_{\varepsilon^{\prime}}$ implies $\left|X_{n} / Y_{n}\right| \geq \varepsilon / B_{\varepsilon^{\prime}}$

Theorem 5.2.8

Theorem 5.2.8. Suppose sequence of random variables $\left(Y_{n}\right)$ is bounded in probability. Suppose $X_{n}=o_{p}\left(Y_{n}\right)$. Then $X_{n} \xrightarrow{P} 0$ as $n \rightarrow \infty$.

Proof. Let $\varepsilon>0$ and let $\varepsilon^{\prime}>0$. Since $\left(Y_{n}\right)$ is bounded in probability by hypothesis, then (by definition) there events $N_{\varepsilon^{\prime}} \in \mathbb{N}$ and $B_{\varepsilon^{\prime}}>0$ such that if $n \geq N_{\varepsilon^{\prime}}$ then $P\left(\left|Y_{n}\right| \leq B_{\varepsilon^{\prime}}\right) \geq a-\varepsilon^{\prime} / 2$. Also, since $X_{n}=o_{p}\left(Y_{n}\right)$ by hypothesis then (by definition) $X_{n} / Y_{n} \xrightarrow{P} 0$ as $n \rightarrow \infty$; that is, $\lim _{n \rightarrow \infty} P\left(\left|S_{n} / Y_{n}\right| \geq \varepsilon\right)=0$. So there is $N_{1} \in \mathbb{N}$ such that for all $n \geq N_{1}$ we have $P\left(\left|X_{n} / Y_{n}\right| \geq \varepsilon / B_{\varepsilon^{\prime}}\right)<\varepsilon^{\prime} / 2$. Let $N=\max \left\{N_{\varepsilon^{\prime}}, N_{1}\right\}$. Then for $n \geq N$ we have

$$
\begin{aligned}
P\left(\left|X_{n}\right| \geq \varepsilon\right)= & P\left(\left(\left|X_{n}\right| \geq \varepsilon\right) \cap\left(\left(\left|Y_{n}\right| \leq B_{\varepsilon^{\prime}}\right) \cap\left(\left|Y_{n}\right|>B_{\varepsilon^{\prime}}\right)\right)\right. \\
= & P\left(\left(\left|X_{n}\right| \geq \varepsilon\right) \cap\left(\left|Y_{n}\right| \leq B_{\varepsilon^{\prime}}\right)\right)+P\left(\left(\left|X_{n}\right| \geq \varepsilon\right) \cap\left(\left|Y_{n}\right|>B_{\varepsilon^{\prime}}\right)\right) \\
\leq & P\left(\left|X_{n}\right| / Y_{n} \mid \geq \varepsilon / B_{\varepsilon^{\prime}}\right)+P\left(\left|Y_{n}\right|>B_{\varepsilon^{\prime}}\right) \text { since }\left|X_{n}\right| \geq \varepsilon \\
& \quad \text { and }\left|Y_{n}\right| \leq B_{\varepsilon^{\prime}} \text { implies }\left|X_{n} / Y_{n}\right| \geq \varepsilon / B_{\varepsilon^{\prime}}
\end{aligned}
$$

Theorem 5.2.8 (continued)

Theorem 5.2.8. Suppose sequence of random variables $\left(Y_{n}\right)$ is bounded in probability. Suppose $X_{n}=o_{p}\left(Y_{n}\right)$. Then $X_{n} \xrightarrow{P} 0$ as $n \rightarrow \infty$.

Proof (continued). . .

$$
\begin{aligned}
P\left(\left|X_{n}\right| \geq \varepsilon\right) & \leq P\left(\left|X_{n}\right| / Y_{n} \mid \geq \varepsilon / B_{\varepsilon^{\prime}}\right)+P\left(\left|Y_{n}\right|>B_{\varepsilon^{\prime}}\right) \\
& <\varepsilon^{\prime} / 2+\left(1-P\left(\left|Y_{n}\right| \leq B_{\varepsilon^{\prime}}\right)\right)<\varepsilon^{\prime} / 2+\left(1-\left(1-\varepsilon^{\prime} / 2\right)\right) \\
& =\varepsilon^{\prime} / 2+\varepsilon^{\prime} / 2=\varepsilon^{\prime}
\end{aligned}
$$

Since $\varepsilon^{\prime}>0$ is arbitrary, then $\lim _{n \rightarrow \infty} P\left(\left|X_{n}\right| \geq \varepsilon\right)=0$ and so $X_{n} \xrightarrow{P} 0$ as $n \rightarrow \infty$, as claimed.

Theorem 5.2.9

Theorem 5.2.9. Let $\left(X_{n}\right)$ be a sequence of random variables which that $\sqrt{n}\left(X_{n}-\theta\right) \xrightarrow{D} N\left(0, \sigma^{2}\right)$. Suppose the function $g(x)$ is differentiable at θ and $g^{\prime}(\theta) \neq 0$. Then

$$
\sqrt{n}\left(g\left(X_{n}\right)-g(\theta)\right) \xrightarrow{D} N\left(0, \sigma^{2}\left(g^{\prime}(\theta)\right)^{2}\right) .
$$

Proof. By "Theorem 5.2.A. A General Mean Value Theorem" we have

$$
g\left(X_{n}\right)=g(\theta)+g^{\prime}(\theta)\left(X_{n}-\theta\right)+o_{p}\left(\left|X_{n}-\theta\right|\right)
$$

$$
g\left(X_{n}\right)-g(\theta)=g^{\prime}(\theta)\left(X_{n}-\theta\right)+o_{p}\left(\left|X_{n}-\theta\right|\right)
$$

or

$$
\sqrt{n} g\left(X_{n}\right)-\sqrt{n} g(\theta)=g^{\prime}(\theta) \sqrt{n}\left(X_{n}-\theta\right)+\sqrt{n} o_{p}\left(\left|X_{n}-\theta\right|\right) .
$$

Theorem 5.2.9

Theorem 5.2.9. Let $\left(X_{n}\right)$ be a sequence of random variables which that $\sqrt{n}\left(X_{n}-\theta\right) \xrightarrow{D} N\left(0, \sigma^{2}\right)$. Suppose the function $g(x)$ is differentiable at θ and $g^{\prime}(\theta) \neq 0$. Then

$$
\sqrt{n}\left(g\left(X_{n}\right)-g(\theta)\right) \xrightarrow{D} N\left(0, \sigma^{2}\left(g^{\prime}(\theta)\right)^{2}\right) .
$$

Proof. By "Theorem 5.2.A. A General Mean Value Theorem" we have

$$
g\left(X_{n}\right)=g(\theta)+g^{\prime}(\theta)\left(X_{n}-\theta\right)+o_{p}\left(\left|X_{n}-\theta\right|\right)
$$

or

$$
g\left(X_{n}\right)-g(\theta)=g^{\prime}(\theta)\left(X_{n}-\theta\right)+o_{p}\left(\left|X_{n}-\theta\right|\right)
$$

or

$$
\sqrt{n} g\left(X_{n}\right)-\sqrt{n} g(\theta)=g^{\prime}(\theta) \sqrt{n}\left(X_{n}-\theta\right)+\sqrt{n} o_{p}\left(\left|X_{n}-\theta\right|\right)
$$

Now $Y_{n}=o_{p}\left(X_{n}\right)$ means $Y_{n} / X_{n} \xrightarrow{P} 0$ as $n \rightarrow \infty$ (or
$\left.\lim _{n \rightarrow \infty} P\left(\left|Y_{n} / X_{n}\right| \geq \varepsilon\right)=0\right)$, so $Y_{n}=o_{p}\left(\sqrt{n} X_{n}\right)$ since $\lim _{n \rightarrow \infty} P\left(\left|Y_{n} /\left(\sqrt{n} X_{n}\right)\right| \geq \varepsilon\right)=0$.

Theorem 5.2.9

Theorem 5.2.9. Let $\left(X_{n}\right)$ be a sequence of random variables which that $\sqrt{n}\left(X_{n}-\theta\right) \xrightarrow{D} N\left(0, \sigma^{2}\right)$. Suppose the function $g(x)$ is differentiable at θ and $g^{\prime}(\theta) \neq 0$. Then

$$
\sqrt{n}\left(g\left(X_{n}\right)-g(\theta)\right) \xrightarrow{D} N\left(0, \sigma^{2}\left(g^{\prime}(\theta)\right)^{2}\right) .
$$

Proof. By "Theorem 5.2.A. A General Mean Value Theorem" we have

$$
g\left(X_{n}\right)=g(\theta)+g^{\prime}(\theta)\left(X_{n}-\theta\right)+o_{p}\left(\left|X_{n}-\theta\right|\right)
$$

or

$$
g\left(X_{n}\right)-g(\theta)=g^{\prime}(\theta)\left(X_{n}-\theta\right)+o_{p}\left(\left|X_{n}-\theta\right|\right)
$$

or

$$
\sqrt{n} g\left(X_{n}\right)-\sqrt{n} g(\theta)=g^{\prime}(\theta) \sqrt{n}\left(X_{n}-\theta\right)+\sqrt{n} o_{p}\left(\left|X_{n}-\theta\right|\right)
$$

Now $Y_{n}=o_{p}\left(X_{n}\right)$ means $Y_{n} / X_{n} \xrightarrow{P} 0$ as $n \rightarrow \infty$ (or $\left.\lim _{n \rightarrow \infty} P\left(\left|Y_{n} / X_{n}\right| \geq \varepsilon\right)=0\right)$, so $Y_{n}=o_{p}\left(\sqrt{n} X_{n}\right)$ since $\lim _{n \rightarrow \infty} P\left(\left|Y_{n} /\left(\sqrt{n} X_{n}\right)\right| \geq \varepsilon\right)=0$.

Theorem 5.2.9 (continued)

Proof (continued). Hence

$$
\sqrt{n} g\left(X_{n}\right)-\sqrt{n} g(\theta)=g^{\prime}(\theta) \sqrt{n}\left(X_{n}-\theta\right)+o_{p}\left(\sqrt{n}\left|X_{n}-\theta\right|\right)
$$

Since $\sqrt{n}\left(X_{n}-\theta\right) \xrightarrow{D} N\left(0, \sigma^{2}\right)$, then by Theorem 5.2.6 $\sqrt{n}\left(X_{n}-\theta\right)$ is bounded in probability and hence so is $\sqrt{n}\left|X_{n}-\theta\right|$. By Theorem 5.2.8 (since $\sqrt{n}\left|X_{n}=\theta\right|$ is bounded in probability) then $o_{p}\left(\sqrt{n}\left|X_{n}-\theta\right|\right) \xrightarrow{P} 0$ as $n \rightarrow \infty$ which, by Theorem 5.2.1. Therefore,
$\sqrt{n} g\left(X_{n}\right)-\sqrt{n} g(\theta)=\sqrt{n}\left(g\left(X_{n}\right)-g(\theta)\right)=g^{\prime}(\theta) \sqrt{n}\left(X_{n}-\theta\right)+o_{p}\left(\sqrt{n}\left|X_{n}-\theta\right|\right)$. That is, $\sqrt{n}\left(X_{n}-\theta\right) \xrightarrow{D} N\left(0, \sigma^{2}\right)$ and $o_{p}\left(\sqrt{n}\left|X_{n}-\theta\right|\right) \xrightarrow{P} 0$, so by Theorem 2.5.2 (Slutsky's Theorem),

$$
\sqrt{n} g\left(X_{n}\right)-\sqrt{n} g(\theta)=\sqrt{n}\left(g\left(X_{n}\right)-g(\theta)\right) \xrightarrow{D} g^{\prime}(\theta) N\left(0, \sigma^{2}\right)+0 .
$$

Now $g^{\prime}(\theta) N\left(0, \sigma^{2}\right)=N\left(0, \sigma^{2}\left(g^{\prime}(\theta)\right)^{2}\right)$ by Theorem 2.4.2, therefore $\sqrt{n}\left(g\left(X_{n}\right)-g(\theta)\right) \xrightarrow{D} N\left(0, \sigma^{2}\left(g^{\prime}(\theta)\right)^{2}\right)$, as claimed.

Theorem 5.2.9 (continued)

Proof (continued). Hence

$$
\sqrt{n} g\left(X_{n}\right)-\sqrt{n} g(\theta)=g^{\prime}(\theta) \sqrt{n}\left(X_{n}-\theta\right)+o_{p}\left(\sqrt{n}\left|X_{n}-\theta\right|\right)
$$

Since $\sqrt{n}\left(X_{n}-\theta\right) \xrightarrow{D} N\left(0, \sigma^{2}\right)$, then by Theorem 5.2.6 $\sqrt{n}\left(X_{n}-\theta\right)$ is bounded in probability and hence so is $\sqrt{n}\left|X_{n}-\theta\right|$. By Theorem 5.2.8 (since $\sqrt{n}\left|X_{n}=\theta\right|$ is bounded in probability) then $o_{p}\left(\sqrt{n}\left|X_{n}-\theta\right|\right) \xrightarrow{P} 0$ as $n \rightarrow \infty$ which, by Theorem 5.2.1. Therefore,
$\sqrt{n} g\left(X_{n}\right)-\sqrt{n} g(\theta)=\sqrt{n}\left(g\left(X_{n}\right)-g(\theta)\right)=g^{\prime}(\theta) \sqrt{n}\left(X_{n}-\theta\right)+o_{p}\left(\sqrt{n}\left|X_{n}-\theta\right|\right)$.
That is, $\sqrt{n}\left(X_{n}-\theta\right) \xrightarrow{D} N\left(0, \sigma^{2}\right)$ and $o_{p}\left(\sqrt{n}\left|X_{n}-\theta\right|\right) \xrightarrow{P} 0$, so by Theorem 2.5.2 (Slutsky's Theorem),

$$
\sqrt{n} g\left(X_{n}\right)-\sqrt{n} g(\theta)=\sqrt{n}\left(g\left(X_{n}\right)-g(\theta)\right) \xrightarrow{D} g^{\prime}(\theta) N\left(0, \sigma^{2}\right)+0 .
$$

Now $g^{\prime}(\theta) N\left(0, \sigma^{2}\right)=N\left(0, \sigma^{2}\left(g^{\prime}(\theta)\right)^{2}\right)$ by Theorem 2.4.2, therefore $\sqrt{n}\left(g\left(X_{n}\right)-g(\theta)\right) \xrightarrow{D} N\left(0, \sigma^{2}\left(g^{\prime}(\theta)\right)^{2}\right)$, as claimed.

