Mathematical Statistics 1

Chapter 5. Consistency and Limiting Distributions 5.4. Extensions to Multivariate Distributions—Proofs of Theorems

Theorem 5.4.4. Multivariate Central Limit Theorem

Lemma 5.4.1

Lemma 5.4.1. Let $\mathbf{v}' = (v_1, v_2, \dots, v_p) \in \mathbb{R}^p$. Then $|v_j| \le \|\mathbf{v}\| \le \sum_{i=1}^p |v_i|$ for all $j = 1, 2, \dots, p$.

Proof. For all j = 1, 2, ..., p we have $v_j \leq \sum_{i=1}^{p} v_i^2 = \|\mathbf{v}\|^2$ and so (taking square roots) $|v_i| \leq \|\mathbf{v}\|$. Next, by the Triangle Inequality,

$$\|\mathbf{v}\| = \left\{\sum_{i=1}^{p} v_i \mathbf{e}_i\right\| \le \sum_{i=1}^{p} \|v_i \mathbf{e}_i\| = \sum_{i=1}^{p} |v_i|$$

(since $\|\mathbf{e}_i\| = 1$ for each *i*). Therefore, $|v_j| \le \|\mathbf{v}\| \le \sum_{i=1}^p |v_i|$, as claimed.

Lemma 5.4.1

Lemma 5.4.1. Let $\mathbf{v}' = (v_1, v_2, \dots, v_p) \in \mathbb{R}^p$. Then $|v_j| \le \|\mathbf{v}\| \le \sum_{i=1}^p |v_i|$ for all $j = 1, 2, \dots, p$.

Proof. For all j = 1, 2, ..., p we have $v_j \leq \sum_{i=1}^{p} v_i^2 = \|\mathbf{v}\|^2$ and so (taking square roots) $|v_j| \leq \|\mathbf{v}\|$. Next, by the Triangle Inequality,

$$\|\mathbf{v}\| = \left\{\sum_{i=1}^{p} v_i \mathbf{e}_i \right\| \le \sum_{i=1}^{p} \|v_i \mathbf{e}_i\| = \sum_{i=1}^{p} |v_i|$$

(since $||\mathbf{e}_i|| = 1$ for each *i*). Therefore, $|v_j| \le ||\mathbf{v}|| \le \sum_{i=1}^p |v_i|$, as claimed.

Theorem 5.4.1. Let $\{X_n\}$ be a sequence of *p*-dimensional vectors and let **X** be a random vector, all defined on the same sample space. Then

$$\mathbf{X}_n \xrightarrow{P} \mathbf{X}$$
 if and only if $X_{nj} \xrightarrow{P} X_j$ for all $j = 1, 2, \dots, p$.

Proof. Let
$$\varepsilon > 0$$
.
Suppose $\mathbf{X}_n \xrightarrow{P} \mathbf{X}$. For any $j = 1, 2, ..., p$, if we have $\varepsilon \le |X_{nj} - X_j|$ then
 $\varepsilon \le |X_{nj} = X_j| \le ||\mathbf{X}_n - \mathbf{X}||$ by Lemma 5.4.1.
Hence $\overline{\lim}_{n \to \infty} P(|X_{nj} - X_j| \ge \varepsilon) \le \overline{\lim}_{n \to \infty} P(||\mathbf{X}_n = \mathbf{X}|| \ge \varepsilon) = 0$ since
 $\mathbf{X}_n \xrightarrow{P} \mathbf{X}$. Since $P(|X_{nj} - X_j| \ge \varepsilon) \ge 0$ for all $n \in \mathbb{N}$, then
 $\lim_{n \to \infty} P(|X_{nj} - X_j| \ge \varepsilon) = 0$ and hence $X_{nj} \xrightarrow{P} X_j$ for all $j = 1, 2, ..., p$,
as claimed.

Theorem 5.4.1. Let $\{X_n\}$ be a sequence of *p*-dimensional vectors and let **X** be a random vector, all defined on the same sample space. Then

$$\mathbf{X}_n \xrightarrow{P} \mathbf{X}$$
 if and only if $X_{nj} \xrightarrow{P} X_j$ for all $j = 1, 2, \dots, p$.

Proof. Let
$$\varepsilon > 0$$
.
Suppose $\mathbf{X}_n \xrightarrow{P} \mathbf{X}$. For any $j = 1, 2, ..., p$, if we have $\varepsilon \le |X_{nj} - X_j|$ then
 $\varepsilon \le |X_{nj} = X_j| \le ||\mathbf{X}_n - \mathbf{X}||$ by Lemma 5.4.1.
Hence $\overline{\lim}_{n \to \infty} P(|X_{nj} - X_j| \ge \varepsilon) \le \overline{\lim}_{n \to \infty} P(||\mathbf{X}_n = \mathbf{X}|| \ge \varepsilon) = 0$ since
 $\mathbf{X}_n \xrightarrow{P} \mathbf{X}$. Since $P(|X_{nj} - X_j| \ge \varepsilon) \ge 0$ for all $n \in \mathbb{N}$, then
 $\lim_{n \to \infty} P(|X_{nj} - X_j| \ge \varepsilon) = 0$ and hence $X_{nj} \xrightarrow{P} X_j$ for all $j = 1, 2, ..., p$,
as claimed.

Theorem 5.4.1 (continued)

Proof (continued). Conversely, suppose $X_{ni} \xrightarrow{P} X_i$ for all j = 1, 2, ..., p. If we have $\varepsilon \leq \|\mathbf{X}_n - \mathbf{X}\|$ then $\varepsilon \leq \|\mathbf{X}_n - \mathbf{X}\| \leq \sum_{i=1}^{r} |X_{nj} - X_j|$ by Lemma 5.4.1. Hence $\overline{\lim_{n \to \infty}} P(\|\mathbf{X}_n - \mathbf{X}\| \ge \varepsilon) \le \overline{\lim_{n \to \infty}} P\left(\sum_{i=1}^p |X_{nj} - X_j| \ge \varepsilon\right)$ $\leq \sum_{i=1}^{p} \overline{\lim_{n \to \infty}} P(|X_{nj} - X_j| \geq \varepsilon/p)$ = 0 since $X_{ni} \xrightarrow{P} X_i$ for $j = 1, 2, \dots, p$ by hypothesis.

Since $P(||\mathbf{X}_n - \mathbf{X}|| \ge \varepsilon) \ge 0$ then $\lim_{n\to\infty} P(||\mathbf{X}_n - \mathbf{X}|| \ge \varepsilon) = 0$ and hence $\mathbf{X}_n \xrightarrow{P} \mathbf{X}$, as claimed.

Theorem 5.4.4. Multivariate Central Limit Theorem.

Let (\mathbf{X}_n) be a sequence of independent and identically distributed ("iid") random vectors with common mean vector μ and variance-covariance matrix $\mathbf{\Sigma}$ which is positive definite. Assume that the common moment generating function $M(\mathbf{t})$ exists in an open neighborhood of $\mathbf{0}$. Let

$$\mathbf{Y}_n = rac{1}{\sqrt{n}} \sum_{i=1}^n (\mathbf{X}_i - \mu) = \sqrt{n} (\sqrt{\mathbf{X}} - \mu).$$

Then \mathbf{Y}_n converges in distribution to a $N_{\rho}(\mathbf{0}, \mathbf{\Sigma})$ distribution.

Proof. Let $\mathbf{t} \in \mathbb{R}^{p}$ be in the neighborhood of $\mathbf{0}$ on which $M(\mathbf{t})$ exists. The moment generating function of \mathbf{Y}_{n} is

$$M_n(\mathbf{t}) = E\left[\exp\left(\mathbf{t}' \frac{1}{\sqrt{n}} \sum_{i=1}^n (\mathbf{X}_i - \boldsymbol{\mu})\right)\right] \dots$$

Theorem 5.4.4. Multivariate Central Limit Theorem.

Let (\mathbf{X}_n) be a sequence of independent and identically distributed ("iid") random vectors with common mean vector μ and variance-covariance matrix $\mathbf{\Sigma}$ which is positive definite. Assume that the common moment generating function $M(\mathbf{t})$ exists in an open neighborhood of $\mathbf{0}$. Let

$$\mathbf{Y}_n = rac{1}{\sqrt{n}}\sum_{i=1}^n (\mathbf{X}_i - \mu) = \sqrt{n}(\sqrt{\mathbf{X}} - \mu).$$

Then \mathbf{Y}_n converges in distribution to a $N_p(\mathbf{0}, \mathbf{\Sigma})$ distribution.

Proof. Let $\mathbf{t} \in \mathbb{R}^p$ be in the neighborhood of $\mathbf{0}$ on which $M(\mathbf{t})$ exists. The moment generating function of \mathbf{Y}_n is

$$M_n(\mathbf{t}) = E\left[\exp\left(\mathbf{t}'\frac{1}{\sqrt{n}}\sum_{i=1}^n (\mathbf{X}_i - \boldsymbol{\mu})\right)\right]\dots$$

Theorem 5.4.4 (continued 1)

Proof (continued). ...

$$M_n(\mathbf{t}) = E\left[\exp\left(\frac{1}{\sqrt{n}}\sum_{i=1}^n \mathbf{t}'(\mathbf{X}_i - \boldsymbol{\mu})\right)\right] = E\left[\exp\left(\frac{1}{\sqrt{n}}\sum_{i=1}^n \mathbf{W}_i\right)\right]$$

where $\mathbf{W}_i = \mathbf{t}'(\mathbf{X}_i = \boldsymbol{\mu})$. Note that $\mathbf{W} - 1, \mathbf{W}_2, \dots, \mathbf{W}_n$ are iid (since $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$ are) with mean **0** and variance

$$\operatorname{Var}(W_i) = (W_i - 0)^2 = \mathbf{t}'(\mathbf{X}_i - \mu)(\mathbf{t}'(\mathbf{X}_i - \mu))'$$

$$=\mathbf{t}'(\mathbf{X}_i-\boldsymbol{\mu})(\mathbf{X}'_i-\boldsymbol{\mu}')\mathbf{t}=\mathbf{t}'\mathbf{\Sigma}\mathbf{t}.$$

So by the Central Limit Theorem (Theorem 5.3.1) and Note 5.3.A,

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}W_{i}\stackrel{D}{\rightarrow}N(0,\mathbf{t}'\boldsymbol{\Sigma}\mathbf{t}). \tag{*}$$

Theorem 5.4.4 (continued 2)

Proof (continued). Since the moment generating function of \mathbf{Y}_n is

$$M_n(\mathbf{t}) = E\left[\exp\left(\frac{1}{\sqrt{n}}\sum_{i=1}^n W_i\right)
ight],$$

we see that this is the moment generating function of $(1/\sqrt{n})\sum_{i=1}^{n} W_i$ evaluated at t = 1. So

$$M_n(\mathbf{t}) = E\left[\exp\left((1)\frac{1}{\sqrt{n}}\sum_{i=1}^n W_i\right)
ight] \to e^{(1)^2\mathbf{t}'\mathbf{\Sigma}\mathbf{t}/2} = e^{\mathbf{t}'\mathbf{\Sigma}\mathbf{t}/2}$$

by Theorem 5.4.3 and (*), since the moment generating function of $N(0, \mathbf{t}'\Sigma \mathbf{t})$ is $e^{t^2\mathbf{t}'\Sigma \mathbf{t}/2}$ by Note 3.4.B. But $e^{\mathbf{t}'\Sigma \mathbf{t}/2}$ is the moment generating function of a $N_p(\mathbf{0}, \Sigma)$ by Note 3.5.E, so by the uniqueness of the moment generating function (by Theorem 1.9.2) we have that $\mathbf{Y}_n \xrightarrow{D} N(\mathbf{0}, \Sigma)$, as claimed.

Theorem 5.4.4 (continued 2)

Proof (continued). Since the moment generating function of \mathbf{Y}_n is

$$M_n(\mathbf{t}) = E\left[\exp\left(rac{1}{\sqrt{n}}\sum_{i=1}^n W_i
ight)
ight],$$

we see that this is the moment generating function of $(1/\sqrt{n})\sum_{i=1}^{n} W_i$ evaluated at t = 1. So

$$M_n(\mathbf{t}) = E\left[\exp\left((1)rac{1}{\sqrt{n}}\sum_{i=1}^n W_i
ight)
ight] o e^{(1)^2\mathbf{t}'\mathbf{\Sigma}\mathbf{t}/2} = e^{\mathbf{t}'\mathbf{\Sigma}\mathbf{t}/2}$$

by Theorem 5.4.3 and (*), since the moment generating function of $N(0, \mathbf{t}'\Sigma\mathbf{t})$ is $e^{t^2\mathbf{t}'\Sigma\mathbf{t}/2}$ by Note 3.4.B. But $e^{\mathbf{t}'\Sigma\mathbf{t}/2}$ is the moment generating function of a $N_p(\mathbf{0}, \Sigma)$ by Note 3.5.E, so by the uniqueness of the moment generating function (by Theorem 1.9.2) we have that $\mathbf{Y}_n \xrightarrow{D} N(\mathbf{0}, \Sigma)$, as claimed.