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Section 1.10. Important Inequalities

Note. We state and prove three inequalities in this section: Markov’s Inequality,

Chebyshev’s Inequality, and Jensen’s Inequality. In the first two inequalities, we

give a proof for continuous random variables and leave the similar proofs for discrete

random variables as exercises. We start with a preliminary result.

Theorem 1.10.1. Let X be a random variable and letm ∈ N. Suppose E[|X|m]

exists. If k ∈ N and k ≤ m, then E(Xk) exists.

Theorem 1.10.2. Markov’s Inequality.

Let u(X) be a nonnegative function of random variable X. If E[u(X)] exists then

for every positive constant c, P (u(x) ≥ c) ≤ E[u(X)]/c.

Note. If E(X2) < ∞ then by Theorem 1.10.1, µ = E[X] < ∞ so that µ exists

and σ2 exists.

Theorem 1.10.3. Chebyshev’s Inequality.

Let X be a random variable where E(X2) < ∞ (so that µ and σ2 are define). Then

for every k > 0

P (|X − µ| ≥ kσ) ≤ 1

k2 or P (|X − µ| < kσ) ≥ 1− 1

k2 .
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Note 1.10.A. We could let kσ = ε in Chebyshev’s Inequality to get P (|X − µ| ≥

ε) ≤ σ2/ε2 for all ε > 0.

Example 1.10.2. Let X be a discrete random variable where P (X = −1) =

P (X = 1) = 1/8 and P (X = 0) = 6/8 = 3/4. Then µ = 0 and

σ2 = E[X2]− µ2 = E[X2] =

(
1

8

)
(−1)2 +

(
1

8

)
(1)2 +

(
3

4

)
(0)2 =

1

4
.

With k = 2 in Chebyshev’s Inequality we have

P (|X − µ| ≥ kσ) = P (|X| ≥ 1) = 1/4 = 1/k2.

In this case, we see that the upper bound on P (|X−µ| ≥ kσ) given by Chebyshev’s

Inequality (namely, 1/k2) is attained for this specific example. This shows that

Chebyshev’s Inequality is best possible or “sharp.”

Note. Before stating and proving Jensen’s Inequality we need a definition and a

preliminary result.

Definition 1.10.1. A function ϕ defined on an interval (a, b), −∞ ≤ a < b ≤ ∞,

is said to be a convex function if for all x, y ∈ (a, b) and for all 0 < γ < 1,

ϕ(γx + (1− γ)y) ≤ γϕ(x) + (1− γ)ϕ(y).

We say ϕ is strictly convex if this inequality is strict.
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Note. As γ ranges over (0, 1), the values of γx + (1 − γ)y ranges from y to x

and the values of γϕ(x) + (1 − γ)ϕ(y) range “linearly” from ϕ(y) to ϕ(x). So the

geometric interpretation is that the chord joining points (x, ϕ(x) and (y, ϕ(y)) lies

above the corresponding function values (as does a “concave up” function).

Theorem 1.10.4. If ϕ is differentiable on (a, b), then

(a) ϕ is convex if and only if ϕ′(x) ≤ ϕ′(y) for all a < x < y < b,

(b) ϕ is strictly convex if and only if ϕ′(x) < ϕ′(y) for all a < x < y < b.

If ϕ is twice differentiable on (a, b) then

(a) ϕ is convex if and only if ϕ′′(x) ≥ 0 for all a < x < b,

(b) ϕ is strictly convex if and only if ϕ′′(x) > 0 for all a < x < b.

Note. Given the figure above, Theorem 1.10.4 is not surprising. A proof can be

found in my online notes for Real Analysis (MATH 5210/5220) on 6.6. Convex

Functions (see Proposition 6.15).

http://faculty.etsu.edu/gardnerr/5210/notes/6-6.pdf
http://faculty.etsu.edu/gardnerr/5210/notes/6-6.pdf
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Note. We now state Jensen’s Inequality, which concerns convex functions applied

to random variable. We give a proof for the special case in which ϕ is twice

differentiable. For a proof assuming only convexity, see 6.6. Convex Functions (see

Jensen’s Inequality, though the proof is based on the interval [0, 1]; it also requires

a slight background in Lebesgue integration).

Theorem 1.10.5. Jensen’s Inequality. If ϕ is convex on an open interval I and

X is a random variable whose support is contained in I and has finite expectation,

then ϕ(E[X]) ≤ E[ϕ(X)]. If ϕ is strictly convex, then the inequality is strict unless

X is a constant random variable.

Example 1.10.4/Definition. Let X be a discrete random variable with sample

space {a1, a2, . . . , an}, each a positive number. Suppose P (X = ai) = 1/n for

i = 1, 2, . . . , n. The arithmetic mean of X is

AM = E[X] =
1

n

n∑
i=1

ai.

Since − log x is a convex function, by Jensen’s Inequality (in the discrete case)

− log

(
1

n

n∑
i=1

ai

)
≤ E[− log X] = −

n∑
i=1

log ai = − log(a1a2 · · · an)
1/n,

or log

(
1

n

n∑
i=1

ai

)
≥ log(a1a2 · · · an)

1/n or (since exp x is an increasing function)

(a1a2 · · · an)
1/n ≤ 1

n

n∑
i=1

ai.

The quantity GM = (a1a2 · · · an)
1/n is the geometric mean of X. So we have

http://faculty.etsu.edu/gardnerr/5210/notes/6-6.pdf
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GM ≤ AM. Replacing ai with 1/ai (both positive) we then have(
1

a1

1

a2
· · · 1

an

)1/n

≤ 1

n

n∑
i=1

1

ai

or
1

1
n

∑n
i=1 a/ai

≤ (a1a2 · · · an)
1/n.

The quantity HM =
1

1
n

∑n
i=1 1/ai

is the harmonic mean of X. So we have HM ≤

GM; combining with the above result we now conclude HM ≤ GM ≤ AM.
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