Section 1.10. Important Inequalities

Note. We state and prove three inequalities in this section: Markov's Inequality, Chebyshev's Inequality, and Jensen's Inequality. In the first two inequalities, we give a proof for continuous random variables and leave the similar proofs for discrete random variables as exercises. We start with a preliminary result.

Theorem 1.10.1. Let X be a random variable and $\operatorname{let} m \in \mathbb{N}$. Suppose $E\left[|X|^{m}\right]$ exists. If $k \in \mathbb{N}$ and $k \leq m$, then $E\left(X^{k}\right)$ exists.

Theorem 1.10.2. Markov's Inequality.

Let $u(X)$ be a nonnegative function of random variable X. If $E[u(X)]$ exists then for every positive constant $c, P(u(x) \geq c) \leq E[u(X)] / c$.

Note. If $E\left(X^{2}\right)<\infty$ then by Theorem 1.10.1, $\mu=E[X]<\infty$ so that μ exists and σ^{2} exists.

Theorem 1.10.3. Chebyshev's Inequality.

Let X be a random variable where $E\left(X^{2}\right)<\infty$ (so that μ and σ^{2} are define). Then for every $k>0$

$$
P(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}} \text { or } P(|X-\mu|<k \sigma) \geq 1-\frac{1}{k^{2}} .
$$

Note 1.10.A. We could let $k \sigma=\varepsilon$ in Chebyshev's Inequality to get $P(|X-\mu| \geq$ $\varepsilon) \leq \sigma^{2} / \varepsilon^{2}$ for all $\varepsilon>0$.

Example 1.10.2. Let X be a discrete random variable where $P(X=-1)=$ $P(X=1)=1 / 8$ and $P(X=0)=6 / 8=3 / 4$. Then $\mu=0$ and

$$
\sigma^{2}=E\left[X^{2}\right]-\mu^{2}=E\left[X^{2}\right]=\left(\frac{1}{8}\right)(-1)^{2}+\left(\frac{1}{8}\right)(1)^{2}+\left(\frac{3}{4}\right)(0)^{2}=\frac{1}{4} .
$$

With $k=2$ in Chebyshev's Inequality we have

$$
P(|X-\mu| \geq k \sigma)=P(|X| \geq 1)=1 / 4=1 / k^{2} .
$$

In this case, we see that the upper bound on $P(|X-\mu| \geq k \sigma)$ given by Chebyshev's Inequality (namely, $1 / k^{2}$) is attained for this specific example. This shows that Chebyshev's Inequality is best possible or "sharp."

Note. Before stating and proving Jensen's Inequality we need a definition and a preliminary result.

Definition 1.10.1. A function φ defined on an interval $(a, b),-\infty \leq a<b \leq \infty$, is said to be a convex function if for all $x, y \in(a, b)$ and for all $0<\gamma<1$,

$$
\varphi(\gamma x+(1-\gamma) y) \leq \gamma \varphi(x)+(1-\gamma) \varphi(y)
$$

We say φ is strictly convex if this inequality is strict.

Note. As γ ranges over $(0,1)$, the values of $\gamma x+(1-\gamma) y$ ranges from y to x and the values of $\gamma \varphi(x)+(1-\gamma) \varphi(y)$ range "linearly" from $\varphi(y)$ to $\varphi(x)$. So the geometric interpretation is that the chord joining points $(x, \varphi(x)$ and $(y, \varphi(y))$ lies above the corresponding function values (as does a "concave up" function).

Theorem 1.10.4. If φ is differentiable on (a, b), then
(a) φ is convex if and only if $\varphi^{\prime}(x) \leq \varphi^{\prime}(y)$ for all $a<x<y<b$,
(b) φ is strictly convex if and only if $\varphi^{\prime}(x)<\varphi^{\prime}(y)$ for all $a<x<y<b$.

If φ is twice differentiable on (a, b) then
(a) φ is convex if and only if $\varphi^{\prime \prime}(x) \geq 0$ for all $a<x<b$,
(b) φ is strictly convex if and only if $\varphi^{\prime \prime}(x)>0$ for all $a<x<b$.

Note. Given the figure above, Theorem 1.10.4 is not surprising. A proof can be found in my online notes for Real Analysis (MATH 5210/5220) on 6.6. Convex Functions (see Proposition 6.15).

Note. We now state Jensen's Inequality, which concerns convex functions applied to random variable. We give a proof for the special case in which φ is twice differentiable. For a proof assuming only convexity, see 6.6. Convex Functions (see Jensen's Inequality, though the proof is based on the interval $[0,1]$; it also requires a slight background in Lebesgue integration).

Theorem 1.10.5. Jensen's Inequality. If φ is convex on an open interval I and X is a random variable whose support is contained in I and has finite expectation, then $\varphi(E[X]) \leq E[\varphi(X)]$. If φ is strictly convex, then the inequality is strict unless X is a constant random variable.

Example 1.10.4/Definition. Let X be a discrete random variable with sample space $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, each a positive number. Suppose $P\left(X=a_{i}\right)=1 / n$ for $i=1,2, \ldots, n$. The arithmetic mean of X is

$$
\mathrm{AM}=E[X]=\frac{1}{n} \sum_{i=1}^{n} a_{i}
$$

Since $-\log x$ is a convex function, by Jensen's Inequality (in the discrete case)

$$
-\log \left(\frac{1}{n} \sum_{i=1}^{n} a_{i}\right) \leq E[-\log X]=-\sum_{i=1}^{n} \log a_{i}=-\log \left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}
$$

or $\log \left(\frac{1}{n} \sum_{i=1}^{n} a_{i}\right) \geq \log \left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}$ or (since $\exp x$ is an increasing function)

$$
\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq \frac{1}{n} \sum_{i=1}^{n} a_{i}
$$

The quantity GM $=\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}$ is the geometric mean of X. So we have
$\mathrm{GM} \leq \mathrm{AM}$. Replacing a_{i} with $1 / a_{i}$ (both positive) we then have

$$
\left(\frac{1}{a_{1}} \frac{1}{a_{2}} \cdots \frac{1}{a_{n}}\right)^{1 / n} \leq \frac{1}{n} \sum_{i=1}^{n} \frac{1}{a_{i}}
$$

or

$$
\frac{1}{\frac{1}{n} \sum_{i=1}^{n} a / a_{i}} \leq\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}
$$

The quantity $\mathrm{HM}=\frac{1}{\frac{1}{n} \sum_{i=1}^{n} 1 / a_{i}}$ is the harmonic mean of X. So we have $\mathrm{HM} \leq$ GM; combining with the above result we now conclude $\mathrm{HM} \leq \mathrm{GM} \leq \mathrm{AM}$.

