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Section 1.10. Important Inequalities

Note. We state and prove three inequalities in this section: Markov’s Inequality,
Chebyshev’s Inequality, and Jensen’s Inequality. In the first two inequalities, we
give a proof for continuous random variables and leave the similar proofs for discrete

random variables as exercises. We start with a preliminary result.

Theorem 1.10.1. Let X be a random variable and letm € N. Suppose E[|X|™]
exists. If K € N and & < m, then F(X*) exists.

Theorem 1.10.2. Markov’s Inequality.
Let u(X) be a nonnegative function of random variable X. If E[u(X)] exists then

for every positive constant ¢, P(u(z) > ¢) < Efu(X)]/c.

Note. If E(X?) < co then by Theorem 1.10.1, 4 = E[X] < oo so that u exists

and o2 exists.

Theorem 1.10.3. Chebyshev’s Inequality.
Let X be a random variable where E(X?) < oo (so that y and o2 are define). Then

for every k > 0
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Note 1.10.A. We could let ko = € in Chebyshev’s Inequality to get P(|X — pu| >

g) < o?/e% for all € > 0.

Example 1.10.2. Let X be a discrete random variable where P(X = —1) =
P(X=1)=1/8and P(X =0) =6/8 = 3/4. Then p = 0 and
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With £ = 2 in Chebyshev’s Inequality we have
P(|X —p| > ko)=P(|X|>1)=1/4=1/F.

In this case, we see that the upper bound on P(|X — u| > ko) given by Chebyshev’s
Inequality (namely, 1/k%) is attained for this specific example. This shows that
Chebyshev’s Inequality is best possible or “sharp.”

Note. Before stating and proving Jensen’s Inequality we need a definition and a

preliminary result.

Definition 1.10.1. A function ¢ defined on an interval (a,b), —oo < a < b < o0,

is said to be a convez function if for all x,y € (a,b) and for all 0 < v < 1,

o(yz 4+ (1 =7)y) <vex) + (1 —=7)ey).

We say ¢ is strictly convex if this inequality is strict.
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Note. As « ranges over (0,1), the values of vx + (1 — )y ranges from y to x
and the values of yp(x) + (1 — v)p(y) range “linearly” from p(y) to ¢(z). So the
geometric interpretation is that the chord joining points (z, ¢(x) and (y, ¢(y)) lies

above the corresponding function values (as does a “concave up” function).
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Theorem 1.10.4. If ¢ is differentiable on (a,b), then

(a) ¢ is convex if and only if ¢'(z) < ¢'(y) for all a < z <y < b,

(b) ¢ is strictly convex if and only if ¢'(z) < ¢'(y) for all a < x <y < b.
If o is twice differentiable on (a, b) then

(a) ¢ is convex if and only if ¢"(z) > 0 for all a < x < b,

(b) ¢ is strictly convex if and only if ¢"(z) > 0 for all a < z < b.

Note. Given the figure above, Theorem 1.10.4 is not surprising. A proof can be
found in my online notes for Real Analysis (MATH 5210/5220) on 6.6. Convex

Functions (see Proposition 6.15).


http://faculty.etsu.edu/gardnerr/5210/notes/6-6.pdf
http://faculty.etsu.edu/gardnerr/5210/notes/6-6.pdf
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Note. We now state Jensen’s Inequality, which concerns convex functions applied
to random variable. We give a proof for the special case in which ¢ is twice
differentiable. For a proof assuming only convexity, see 6.6. Convex Functions (see
Jensen’s Inequality, though the proof is based on the interval [0, 1]; it also requires

a slight background in Lebesgue integration).

Theorem 1.10.5. Jensen’s Inequality. If ¢ is convex on an open interval I and
X is a random variable whose support is contained in I and has finite expectation,
then p(E[X]) < E[p(X)]. If ¢ is strictly convex, then the inequality is strict unless

X 1is a constant random variable.

Example 1.10.4/Definition. Let X be a discrete random variable with sample
space {ai,as,...,a,}, each a positive number. Suppose P(X = a;) = 1/n for

1 =1,2,...,n. The arithmetic mean of X is

n
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Since — log z is a convex function, by Jensen’s Inequality (in the discrete case)
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or log (— E ai> > log(ajasg - - - an)l/n or (since exp x is an increasing function)
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The quantity GM = (a1a2---an)1/” is the geometric mean of X. So we have


http://faculty.etsu.edu/gardnerr/5210/notes/6-6.pdf
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GM < AM. Replacing a; with 1/a; (both positive) we then have

or

The quantity HM = is the harmonic mean of X. So we have HM <

1
% Z?:l 1/a;
GM; combining with the above result we now conclude HM < GM < AM.
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