Section 1.2. Sets

Note. Ironically, we never formally define a set, but leave it as the intuitive idea of a "collection" of objects called "elements." In this section we present several ideas from "naive" set theory; for a more treatment, see my online notes for Introduction to Set Theory. We also define some functions on sets. Such functions will play an important role in the future. We assume a familiarity with sets of real numbers at the level of Calculus 1 where sets are described using interval notation or inequalities:

$$
\{x \in \mathbb{R} \mid 1 \leq 2\}=\{x \in \mathbb{R} \mid x \in[1,2)\}
$$

Definition. A set C is countable if it is either finite or if it has "as many elements" as there are natural numbers (that is, there is a one to one and onto function from C to $\mathbb{N})$.

Note. Some infinite countable sets are $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$, and $\mathbb{Q} \times \mathbb{Q}$. Surprisingly, there are uncountable sets! The interval $(0,1)$ is not countable (see Theorem 1-20 of my Analysis 1 notes for 1.3. The Completeness Axiom).

Definition 1.2.2. The complement of an event A is the set of all elements in \mathcal{C} which are not in A, denoted A^{c}. That is, $A^{c}=\{x \in \mathcal{C} \mid x \notin A\}$.

Definition 1.2.2. If each element of set A is also an element of set B, then set A is a subset of set B, denoted $A \subset B$ or $B \supset A$. If $A \subset B$ and $B \subset A$ then sets A and B are equal, denoted $A=B$.

Definition 1.2.3. Let A and B be events. The union of A and B is the set of all elements that are in A or in B or in both A and B, denoted $A \cup B$.

Definition 1.2.4. Let A and B be events. The intersection of A and B is the set of all elements that are in both A and B, denoted $A \cap B$.

Definition 1.2.5. Let A and B be events. Then A and B are disjoint if $A \cap B=\varnothing$, where \varnothing denotes the empty set. If A and B are disjoint then $A \cup B$ is called the disjoint union, which we denote as $A \cup B$ (though the text does not use this notation).

Note. The text illustrates the definitions above definitions with Venn diagrams as follows:

Theorem 1.2.A. For any sets (events) A, B, and C we have

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \text { and } A \cup(C \cap C)=(A \cup B) \cap(A \cup C) .
$$

These are the distributive laws.

Theorem 1.2.B. De Morgan's Laws. For any two sets (events) A and B, we have

$$
(A \cap B)^{c}=A^{c} \cup B^{c} \text { and }(A \cup B)^{c}=A^{c} \cap B^{c} .
$$

Definition. For sets $A_{1}, A_{2}, \ldots, A_{n}$ define the union and intersection, respectively, as

$$
\begin{gathered}
A_{1} \cup A_{2} \cup \cdots \cup A_{n}=\cup_{i=1}^{n} A_{i}=\left\{x\left|x \in A_{i}\right| \text { for some } i \in\{1,2, \ldots, n\}\right\}, \\
A_{1} \cap A_{2} \cap \cdots \cap A_{n}=\cap_{i=1}^{n} A_{i}=\left\{x\left|x \in A_{i}\right| \text { for all } i \in\{1,2, \ldots, n\}\right\} .
\end{gathered}
$$

For a sequence of sets A_{1}, A_{2}, \ldots define the union and intersection, respectively, as

$$
\begin{gathered}
A_{1} \cup A_{2} \cup \cdots=\cup_{i=1}^{\infty} A_{i}=\left\{x\left|x \in A_{i}\right| \text { for some } i \in \mathbb{N}\right\}, \\
A_{1} \cap A_{2} \cap \cdots=\cap_{i=1}^{\infty} A_{i}=\left\{x\left|x \in A_{i}\right| \text { for all } i \in \mathbb{N}\right\} .
\end{gathered}
$$

More generally, for any collection of set A_{i} where $i \in I$ and I is some indexing set (finite, countable, or uncountable), define the union and intersection, respectively, as

$$
\begin{gathered}
\cup_{i \in I} A_{i}=\left\{x\left|x \in A_{i}\right| \text { for some } i \in I\right\}, \\
\cap_{i \in I} A_{i}=\left\{x\left|x \in A_{i}\right| \text { for all } i \in I\right\} .
\end{gathered}
$$

Note. De Morgan's Laws hold for finite, countable, and arbitrary unions.

Example 1.2.4. Suppose \mathcal{C} is the interval of real numbers $(0,5)$. Define $C_{n}=$ $(1-1 / n, 2+1 / n)$ and $D_{n}=(1 / n, 3-1 / n)$ for $n \in \mathbb{N}$. Then $\cup_{n=1}^{\infty} C_{n}=(0,3)$, $\cap_{n=1}^{\infty} C_{n}=[1,2], \cup_{n=1}^{\infty} D_{n}=(0,3)$, and $\cap_{n=1}^{\infty} D_{n}=(1,2)$. This example motivates the following definition.

Definition. A sequence of sets $\left\{A_{n}\right\}$ is monotone nondecreasing (also called "monotone increasing") if $A_{n} \subset A_{n+1}$ for $n \in \mathbb{N}$. The sequence is monotone nonincreasing (also called "monotone decreasing") is $A_{n} \supset A_{n+1}$ for $n \in \mathbb{N}$. For monotone nondecreasing sequence $\left\{A_{n}\right\}$ define the limit $\lim _{n \rightarrow \infty} A_{n}=\cup_{n=1}^{\infty} A_{n}$. For monotone increasing sequence $\left\{A_{n}\right\}$ define the limit $\lim _{n \rightarrow \infty} A_{n}=\cap_{n=1}^{\infty} A_{n}$.

Definition. A function that maps sets into the real numbers is called a set function.

Example. If $f(x)=e^{-x^{2}}$ then we can define set function F on closed intervals of real numbers as $F([a, b])=\int_{a}^{b} e^{-x^{2}} d x$.

Note. We will often deal with definite integrals. For $A \subset \mathbb{R}$ and f a real valued function, we denote the integral of f over A as $\int_{A} f(x) d x$, though we may have legitimate concerns about the integral existing (or being finite). If $A \subset \mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}$ then we denote an integral of $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ as $\iint_{A} g(x, y) d x d y$.

Example 1.2.7. Let $\mathcal{C}=\mathbb{N}$ and let $A \subset \mathcal{C}$. Define the set function

$$
Q(A)=\sum_{n \in A}\left(\frac{2}{3}\right)^{n}
$$

Then

$$
Q(\mathcal{C})=\sum_{n \in \mathbb{N}}\left(\frac{2}{3}\right)^{n}=\sum_{i=0}^{\infty}\left(\frac{2}{3}\right)^{n}=\frac{1}{1-2 / 3}=3 .
$$

Let B be the set of off positive integers. Then

$$
Q(B)=\sum_{n \in B}\left(\frac{2}{3}\right)^{n}=\sum_{i=0}\left(\frac{2}{3}\right)^{2 n+1}=\frac{2}{3} \sum_{i=0}^{\infty}\left(\frac{4}{9}\right)^{n}=\frac{2}{3} \frac{1}{1-4 / 9}=\frac{6}{5} .
$$

Example 1.2.9. Let $\mathcal{C}=\mathbb{R}^{n}$. for $A \subset \mathcal{C}$ define the set function $Q(A)=$ $\iint \cdots \int_{A} d x_{1} d x_{2} \cdots d x_{n}$, provided the integral exists (notice this is an integral of the function 1 so we expect the quantity $Q(A)$ to be the n-dimensional volume of $A)$. Let

$$
A=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid-\leq x_{1} \leq x_{2} \text { and } 0 \leq x_{i} \leq 1 \text { for } i \in\{2,3,4, \ldots, n\}\right\}
$$

Then

$$
\begin{aligned}
Q(A) & =\int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1} \int_{0}^{x_{2}} d x_{1} d x_{2} \cdots d x_{n}=(1) \int_{0}^{1}\left(\int_{0}^{x_{2}} d x_{1}\right) d x_{2} \\
& =\int_{0}^{1}\left(\left.x_{1}\right|_{x_{1}=0} ^{x_{1}=x_{2}}\right) d x_{2}=\int_{0}^{1}\left(x_{2}-0\right) d x_{2}=\left.\frac{1}{2} x_{2}^{2}\right|_{x_{2}=0} ^{x_{2}=1}=\frac{1}{2}
\end{aligned}
$$

If $B=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid 0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n} \leq 1\right\}$ then

$$
\begin{aligned}
Q(B) & =\int_{0}^{1} \int_{0}^{x_{n}} \cdots \int_{0}^{x_{3}} \int_{0}^{x_{2}} d x_{1} d x_{2} \cdots d x_{n-1} d x_{n} \\
& =\int_{0}^{1} \int_{0}^{x_{n}} \cdots \int_{0}^{x_{3}}\left(x_{1} \mid x_{x_{1}=0}^{x_{1}=x_{2}}\right) d x_{2} \cdots d x_{n-1} d x_{n}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{1} \int_{0}^{x_{n}} \cdots \int_{0}^{x_{3}} x_{2} d x_{2} \cdots d x_{n-1} d x_{n} \\
& =\int_{0}^{1} \int_{0}^{x_{n}} \cdots \int_{0}^{x_{4}} \frac{1}{2} x_{3}^{2} d x_{3} \cdots d x_{n-1} d x_{n} \\
& =\int_{0}^{1} \int_{0}^{x_{n}} \cdots \int_{0}^{x_{5}} \frac{1}{(1)(2)(3)} x_{4}^{3} d x_{4} \cdots d x_{n-1} d x_{n} \\
& =\cdots=\int_{0}^{1} \frac{1}{(n-1)!} x_{n}^{n-1} d x_{n}=\left.\frac{1}{n!} x_{n}^{n}\right|_{x_{n}=0} ^{x_{x}=1}=\frac{1}{n!}
\end{aligned}
$$

