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Section 1.2. Sets

Note. Ironically, we never formally define a set, but leave it as the intuitive

idea of a “collection” of objects called “elements.” In this section we present

several ideas from “naive” set theory; for a more treatment, see my online notes for

Introduction to Set Theory. We also define some functions on sets. Such functions

will play an important role in the future. We assume a familiarity with sets of real

numbers at the level of Calculus 1 where sets are described using interval notation

or inequalities:

{x ∈ R | 1 ≤ 2} = {x ∈ R | x ∈ [1, 2)}.

Definition. A set C is countable if it is either finite or if it has “as many elements”

as there are natural numbers (that is, there is a one to one and onto function from

C to N).

Note. Some infinite countable sets are N, Z, Q, and Q × Q. Surprisingly, there

are uncountable sets! The interval (0, 1) is not countable (see Theorem 1-20 of my

Analysis 1 notes for 1.3. The Completeness Axiom).

Definition 1.2.2. The complement of an event A is the set of all elements in C

which are not in A, denoted Ac. That is, Ac = {x ∈ C | x 6∈ A}.

Definition 1.2.2. If each element of set A is also an element of set B, then set A

is a subset of set B, denoted A ⊂ B or B ⊃ A. If A ⊂ B and B ⊂ A then sets A

and B are equal, denoted A = B.

http://faculty.etsu.edu/gardnerr/Set-Theory-Intro/notes.htm
http://faculty.etsu.edu/gardnerr/4217/notes/1-3.pdf
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Definition 1.2.3. Let A and B be events. The union of A and B is the set of all

elements that are in A or in B or in both A and B, denoted A ∪B.

Definition 1.2.4. Let A and B be events. The intersection of A and B is the set

of all elements that are in both A and B, denoted A ∩B.

Definition 1.2.5. Let A and B be events. Then A and B are disjoint if A∩B = ∅,

where ∅ denotes the empty set. If A and B are disjoint then A ∪ B is called the

disjoint union, which we denote as A ∪· B (though the text does not use this

notation).

Note. The text illustrates the definitions above definitions with Venn diagrams as

follows:
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Theorem 1.2.A. For any sets (events) A, B, and C we have

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) and A ∪ (C ∩ C) = (A ∪B) ∩ (A ∪ C).

These are the distributive laws.

Theorem 1.2.B. De Morgan’s Laws. For any two sets (events) A and B, we

have

(A ∩B)c = Ac ∪Bc and (A ∪B)c = Ac ∩Bc.

Definition. For sets A1, A2, . . . , An define the union and intersection, respectively,

as

A1 ∪ A2 ∪ · · · ∪ An = ∪n
i=1Ai = {x | x ∈ Ai | for some i ∈ {1, 2, . . . , n}} ,

A1 ∩ A2 ∩ · · · ∩ An = ∩n
i=1Ai = {x | x ∈ Ai | for all i ∈ {1, 2, . . . , n}} .

For a sequence of sets A1, A2, . . . define the union and intersection, respectively, as

A1 ∪ A2 ∪ · · · = ∪∞i=1Ai = {x | x ∈ Ai | for some i ∈ N} ,

A1 ∩ A2 ∩ · · · = ∩∞i=1Ai = {x | x ∈ Ai | for all i ∈ N} .

More generally, for any collection of set Ai where i ∈ I and I is some indexing set

(finite, countable, or uncountable), define the union and intersection, respectively,

as

∪i∈IAi = {x | x ∈ Ai | for some i ∈ I} ,

∩i∈IAi = {x | x ∈ Ai | for all i ∈ I} .
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Note. De Morgan’s Laws hold for finite, countable, and arbitrary unions.

Example 1.2.4. Suppose C is the interval of real numbers (0, 5). Define Cn =

(1 − 1/n, 2 + 1/n) and Dn = (1/n, 3 − 1/n) for n ∈ N. Then ∪∞n=1Cn = (0, 3),

∩∞n=1Cn = [1, 2], ∪∞n=1Dn = (0, 3), and ∩∞n=1Dn = (1, 2). This example motivates

the following definition.

Definition. A sequence of sets {An} is monotone nondecreasing (also called

“monotone increasing”) if An ⊂ An+1 for n ∈ N. The sequence is monotone

nonincreasing (also called “monotone decreasing”) is An ⊃ An+1 for n ∈ N. For

monotone nondecreasing sequence {An} define the limit limn→∞ An = ∪∞n=1An. For

monotone increasing sequence {An} define the limit limn→∞ An = ∩∞n=1An.

Definition. A function that maps sets into the real numbers is called a set function.

Example. If f(x) = e−x2

then we can define set function F on closed intervals of

real numbers as F ([a, b]) =
∫ b

a e−x2

dx.

Note. We will often deal with definite integrals. For A ⊂ R and f a real valued

function, we denote the integral of f over A as
∫

A f(x) dx, though we may have

legitimate concerns about the integral existing (or being finite). If A ⊂ R×R = R2

then we denote an integral of g : R2 → R as
∫ ∫

Ag(x, y) dx dy.
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Example 1.2.7. Let C = N and let A ⊂ C. Define the set function

Q(A) =
∑
n∈A

(
2

3

)n

.

Then

Q(C) =
∑
n∈N

(
2

3

)n

=
∞∑
i=0

(
2

3

)n

=
1

1− 2/3
= 3.

Let B be the set of off positive integers. Then

Q(B) =
∑
n∈B

(
2

3

)n

=
∑
i=0

(
2

3

)2n+1

=
2

3

∞∑
i=0

(
4

9

)n

=
2

3

1

1− 4/9
=

6

5
. �

Example 1.2.9. Let C = Rn. for A ⊂ C define the set function Q(A) =∫ ∫
· · ·

∫
A dx1 dx2 · · · dxn, provided the integral exists (notice this is an integral of

the function 1 so we expect the quantity Q(A) to be the n-dimensional volume of

A). Let

A = {(x1, x2, . . . , xn) | − ≤ x1 ≤ x2 and 0 ≤ xi ≤ 1 for i ∈ {2, 3, 4, . . . , n}}.

Then

Q(A) =

∫ 1

0

∫ 1

0
· · ·

∫ 1

0

∫ x2

0
dx1 dx2 · · · dxn = (1)

∫ 1

0

(∫ x2

0
dx1

)
dx2

=

∫ 1

0

(
x1|x1=x2

x1=0

)
dx2 =

∫ 1

0
(x2 − 0) dx2 =

1

2
x2

2|
x2=1
x2=0 =

1

2
.

If B = {(x1, x2, . . . , xn) | 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1} then

Q(B) =

∫ 1

0

∫ xn

0
· · ·

∫ x3

0

∫ x2

0
dx1 dx2 · · · dxn−1 dxn

=

∫ 1

0

∫ xn

0
· · ·

∫ x3

0

(
x1|x1=x2

x1=0

)
dx2 · · · dxn−1 dxn
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=

∫ 1

0

∫ xn

0
· · ·

∫ x3

0
x2 dx2 · · · dxn−1 dxn

=

∫ 1

0

∫ xn

0
· · ·

∫ x4

0

1

2
x2

3 dx3 · · · dxn−1 dxn

=

∫ 1

0

∫ xn

0
· · ·

∫ x5

0

1

(1)(2)(3)
x3

4 dx4 · · · dxn−1 dxn

= · · · =
∫ 1

0

1

(n− 1)!
xn−1

n dxn =
1

n!
xn

n|
xx=1
xn=0 =

1

n!
.
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